5,353 research outputs found

    Effects of Dissipation on Quantum Phase Slippage in Charge Density Wave Systems

    Full text link
    We study the effect of the dissipation on the quantum phase slippage via the creation of ``vortex ring'' in charge density wave (CDW) systems. The dissipation is assumed to come from the interaction with the normal electron near and inside of the vortex core. We describe the CDW by extracted macroscopic degrees of freedom, that is, the CDW phase and the radius of the ``vortex ring'', assume the ohmic dissipation, and investigate the effect in the context of semiclassical approximation. The obtained results are discussed in comparison with experiments. It turns out that the effect of such a dissipation can be neglected in experiments.Comment: 9 pages (revtex), 2 figures, using epsf.st

    The Effects of d_{x^2-y^2}-d_{xy} Mixing on Vortex Structures and Magnetization

    Full text link
    The structure of an isolated single vortex and the vortex lattice, and the magnetization in a dd-wave superconductor are investigated within a phenomenological Ginzburg-Landau (GL) model including the mixture of the dx2−y2d_{x^2-y^2}-wave and dxyd_{xy}-wave symmetry. The isolated single vortex structure in a week magnetic field is studied both numerically and asymptotically. Near the upper critical field Hc2H_{c2}, the vortex lattice structure and the magnetization are calculated analytically.Comment: 14 pages, REVTeX, 2 EPS figures, Journal of Physics: Condensed Matter (in press

    Thermal conductivity in B- and C- phase of UPt_3

    Full text link
    Although the superconductivity in UPt_3 is one of the most well studied, there are still lingering questions about the nodal directions in the B and C phase in the presence of a magnetic field. Limiting ourselves to the low temperature regime (T<<Delta(0)), we study the magnetothermal conductivity with in semiclassical approximation using Volovik's approach. The angular dependence of the magnetothermal conductivity for an arbitrary field direction should clarify the nodal structure in UPt_3.Comment: 4 pages, 5 figure

    Bridging k- and q- Space in the Cuprates: Comparing ARPES and STM Results

    Full text link
    A critical comparison is made between the ARPES-derived spectral function and STM studies of Friedel-like oscillations in Bi_2Sr_2CaCu_2O_{8+delta} (Bi2212). The data can be made approximately consistent, provided that (a) the elastic scattering seen in ARPES is predominantly small-angle scattering and (b) the `peak' feature seen in ARPES is really a dispersive `bright spot', smeared into a line by limited energy resolution; these are the `bright spots' which control the quasiparticle interferences. However, there is no indication of bilayer splitting in the STM data.Comment: 6 eps figures, revte

    Antiferromagnetic Excitations and Van Hove Singularities in YBa2_2Cu3_3O6+x_{6+x}

    Full text link
    We show that in quasi-two-dimensional dd-wave superconductors Van Hove singularities close to the Fermi surface lead to novel magnetic quasi-particle excitations. We calculate the temperature and doping dependence of dynamical magnetic susceptibility for YBCO and show that the proposed excitations are in agreement with inelastic neutron scattering experiments. In addition, the values of the gap parameter and in-plane antiferromagnetic coupling are much smaller than usually believed.Comment: REVTeX, 4 pages + 3 PostScript (compressed) figures; to appear in Phys. Rev. B (Rap. Comm.

    Quasiparticle spectrum of the hybrid s+g-wave superconductors YNi_2B_2C and LuNi_2B_2C

    Full text link
    Recent experiments on single crystals of YNi2_2B2_2C have revealed the presence of point nodes in the superconducting energy gap Delta(k} at k = (1,0,0), (0,1,0), (-1,0,0), and (0,-1,0). In this paper we investigate the effects of impurity scattering on the quasiparticle spectrum in the vortex state of s+g-wave superconductors, which is found to be strongly modified in the presence of disorder. In particular, a gap in the quasiparticle energy spectrum is found to open even for infinitesimal impurity scattering, giving rise to exponentially activated thermodynamic response functions, such as the specific heat, the spin susceptibility, the superfluid density, and the nuclear spin lattice relaxation. Predictions derived from this study can be verified by measurements of the angular dependent magnetospecific heat and the magnetothermal conductivity.Comment: 8 pages, RevTex, 4 figure

    Sound propagation in density wave conductors and the effect of long-range Coulomb interaction

    Full text link
    We study theoretically the sound propagation in charge- and spin-density waves in the hydrodynamic regime. First, making use of the method of comoving frame, we construct the stress tensor appropriate for quasi-one dimensional systems within tight-binding approximation. Taking into account the screening effect of the long-range Coulomb interaction, we find that the increase of the sound velocity below the critical temperature is about two orders of magnitude less for longitudinal sound than for transverse one. It is shown that only the transverse sound wave with displacement vector parallel to the chain direction couples to the phason of the density wave, therefore we expect significant electromechanical effect only in this case.Comment: revtex, 14 pages (in preprint form), submitted to PR

    Superconducting Gap Structure of kappa-(BEDT-TTF)2Cu(NCS)2 Probed by Thermal Conductivity Tensor

    Full text link
    The thermal conductivity of organic superconductor kappa-(BEDT-TTF)2Cu(NCS)2 (Tc =10.4 K) has been studied in a magnetic field rotating within the 2D superconducting planes with high alignment precision. At low temperatures (T < 0.5 K), a clear fourfold symmetry in the angular variation, which is characteristic of a d-wave superconducting gap with nodes along the directions rotated 45 degrees relative to the b and c axes of the crystal, was resolved. The determined nodal structure is inconsistent with recent theoretical predictions of superconductivity induced by the antiferromagnetic spin fluctuation.Comment: 5 pages, 4 figures, to be published in Phys. Rev. Let

    Multiple Superconducting Phases in New Heavy Fermion Superconductor PrOs4Sb12

    Full text link
    The superconducting gap structure of recently discovered heavy fermion superconductor PrOs4Sb12 was investigated by using thermal transport measurements in magnetic field rotated relative to the crystal axes. We demonstrate that a novel change in the symmetry of the superconducting gap function occurs deep inside the superconducting state, giving a clear indication of the presence of two distinct superconducting phases with twofold and fourfold symmetries. We infer that the gap functions in both phases have a point node singularity, in contrast to the familiar line node singularity observed in almost all unconventional superconductors.Comment: 4 Pages, 4 Figure

    The magnetic field dependence of the threshold electric field in unconventional charge density waves

    Full text link
    Many experiments suggest that the unidentified low temperature phase (LTP) of alpha-(BEDT-TTF)_2KHg(SCN)_4 is most likely unconventional charge density wave (UCDW). To further this identification we present our theoretical study of the threshold electric field of UCDW in a magnetic field. The magnetic field-temperature phase diagram is very similar to those in a d-wave superconductor. We find a rather strong field dependence of the threshold electric field, which should be readily accessible experimentally.Comment: 7 pages, 6 figure
    • …
    corecore