4,455 research outputs found

    Effects of Dissipation on Quantum Phase Slippage in Charge Density Wave Systems

    Full text link
    We study the effect of the dissipation on the quantum phase slippage via the creation of ``vortex ring'' in charge density wave (CDW) systems. The dissipation is assumed to come from the interaction with the normal electron near and inside of the vortex core. We describe the CDW by extracted macroscopic degrees of freedom, that is, the CDW phase and the radius of the ``vortex ring'', assume the ohmic dissipation, and investigate the effect in the context of semiclassical approximation. The obtained results are discussed in comparison with experiments. It turns out that the effect of such a dissipation can be neglected in experiments.Comment: 9 pages (revtex), 2 figures, using epsf.st

    Supercurrent in Nodal Superconductors

    Full text link
    In recent years, a number of nodal superconductors have been identified; d-wave superconductors in high T_c cuprates, CeCoIn5_5, and \kappa-(ET)_2Cu(NCS)_2, 2D f-wave superconductor in Sr_2RuO_4 and hybrid s+g-wave superconductor in YNi_2B_2C. In this work we conduct a theoretical study of nodal superconductors in the presence of supercurrent. For simplicity, we limit ourselves to d-wave and 2D f-wave superconductors. We compute the quasiparticle density of states and the temperature dependence of the depairing critical current in nodal superconductors, both of which are accessible experimentally.Comment: revtex4, 6 pages, 7 figures; fixed typos, updated references, trimmed introductio

    Interface superconductivity in La1.48_{1.48}Nd0.4_{0.4}Sr0.12_{0.12}CuO4_{4}/La1.84_{1.84}Sr0.16_{0.16}CuO4_{4} bilayers

    Get PDF
    We identify a distinct superconducting phase at the interface of a La1.48_{1.48}Nd0.4_{0.4}Sr0.12_{0.12}CuO4_4 (LNSCO)/La1.84_{1.84}Sr0.16_{0.16}CuO4_4 (LSCO) epitaxial bilayer system using ac screening measurements. A model based on inter-diffusion of quasiparticles and condensate at the interface yields a thickness of \sim 25 nm for the interfacial layer. Two-dimensional superconductivity of the interface layer appears to be governed by Kosterlitz-Thouless-Berezinskii transition. A parallel magnetic field suppresses the superconducting transition temperature of this layer with a pair breaking parameter α\alpha varying as H2H^2

    Influence of Quantum Hall Effect on Linear and Nonlinear Conductivity in the FISDW States of the Organic Conductor (TMTSF)_2PF_6

    Full text link
    We report a detailed characterization of quantum Hall effect (QHE) influence on the linear and non-linear resistivity tensor in FISDW phases of the organic conductor (TMTSF)2PF6. We show that the behavior at low electric fields, observed for nominally pure single crystals with different values of the resistivity ratio, is fully consistent with a theoretical model, which takes QHE nature of FISDW and residual quasi-particle density associated with different crystal imperfection levels into account. The non-linearity in longitudinal and diagonal resistivity tensor components observed at large electric fields reconciles preceding contradictory results. Our theoretical model offers a qualitatively good explanation of the observed features if a sliding of the density wave with the concomitant destruction of QHE, switched on above a finite electric field, is taken into account.Comment: 8 pages, 6 figures, submitted to EPJ

    Constraints from Neutrinoless Double Beta Decay

    Get PDF
    We examine the constraints from the recent HEIDELBERG-MOSCOW double beta decay experiment. It leads us to the almost degenerate or inverse hierarchy neutrino mass scenario. In this scenario, we obtain possible upper bounds for the Majorana CP violating phase in the lepton sector by incorporating the data from the neutrino oscillation, the single beta decay experiments, and from the astrophysical observation. We also predict the neutrino mass that may be measurable in the future beta decay experiments.Comment: 10 pages, 3 figure

    The upper critical field of filamentary Nb3Sn conductors

    Get PDF
    We have examined the upper critical field of a large and representative set of present multi-filamentary Nb3Sn wires and one bulk sample over a temperature range from 1.4 K up to the zero field critical temperature. Since all present wires use a solid-state diffusion reaction to form the A15 layers, inhomogeneities with respect to Sn content are inevitable, in contrast to some previously studied homogeneous samples. Our study emphasizes the effects that these inevitable inhomogeneities have on the field-temperature phase boundary. The property inhomogeneities are extracted from field-dependent resistive transitions which we find broaden with increasing inhomogeneity. The upper 90-99 % of the transitions clearly separates alloyed and binary wires but a pure, Cu-free binary bulk sample also exhibits a zero temperature critical field that is comparable to the ternary wires. The highest mu0Hc2 detected in the ternary wires are remarkably constant: The highest zero temperature upper critical fields and zero field critical temperatures fall within 29.5 +/- 0.3 T and 17.8 +/- 0.3 K respectively, independent of the wire layout. The complete field-temperature phase boundary can be described very well with the relatively simple Maki-DeGennes model using a two parameter fit, independent of composition, strain state, sample layout or applied critical state criterion.Comment: Accepted Journal of Applied Physics Few changes to shorten document, replaced eq. 7-

    Large-N limit of a magnetic impurity in unconventional density waves

    Full text link
    We investigate the effect of unconventional density wave (UDW) condensate on an Anderson impurity using large-N technique at T=0. In accordance with previous treatments of a Kondo impurity in pseudogap phases, we find that Kondo effect occurs only in a certain range of parameters. The f-electron density of states reflects the influence of UDW at low energies and around the maximum of the density wave gap. The static spin susceptibility diverges at the critical coupling, indicating the transition from strong to weak coupling. In the dynamic spin susceptibility an additional peak appears showing the presence the UDW gap. Predictions concerning non-linear density of states are made. Our results apply to other unconventional condensates such as d-wave superconductors and d-density waves as well.Comment: 9 pages, 7 figure

    Impurity scattering in unconventional density waves

    Full text link
    We have investigated the effect of nonmagnetic impurities on the quasi-one-dimensional unconventional density wave (UDW) ground state. The thermodynamics were found to be close to those of a d-wave superconductor in the Born limit. Four different optical conductivity curves were found depending on the direction of the applied electric field and on the wavevector dependence of the gap.Comment: 14 pages, 9 figure

    Magnetothermopower and Nernst effect in unconventional charge density waves

    Full text link
    Recently we have shown that the striking angular dependent magnetoresistance in the low temperature phase (LTP) of alpha-(BEDT-TTF)_2KHg(SCN)_4 is consistently described in terms of unconventional charge density wave (UCDW). Here we investigate theoretically the thermoelectric power and the Nernst effect in UDW. The present results account consistently for the recent data of magnetothermopower in alpha-(BEDT-TTF)_2KHg(SCN)_4 obtained by Choi et al. (Phys. Rev. B, 65, 205119 (2002)). This confirms further our identification of LTP in this salt as UCDW. We propose also that the Nernst effect provides a clear signature of UDW.Comment: 4 pages, 4 figure

    Zeeman response of d-wave superconductors: Born approximation for impurity and spin-orbit scattering potentials

    Full text link
    The effects of impurity and spin-orbit scattering potentials can strongly affect the Zeeman response of a d-wave superconductor. Here, both the phase diagram and the quasiparticle density of states are calculated within the Born approximation and it is found that the spin-orbit interaction influences in a qualitatively different way the Zeeman response of d-wave and s-wave superconductors.Comment: 19 pages, 6 eps figures, submitted to Physica
    corecore