4,221 research outputs found

    Superconductivity in Geometrically Frustrated Pyrochlore RbOs2O6

    Full text link
    We report the basic thermodynamic properties of the new geometrically frustrated beta-pyrochlore bulk superconductor RbOs2O6 with a critical temperature Tc = 6.4 K. Specific heat measurements are performed in magnetic fields up to 12 T. The electronic density of states at the Fermi level in the normal state results in gamma = (33.7 \pm 0.2) mJ/mol_f.u./K^2. In the superconducting state, the specific heat follows conventional BCS-type behavior down to 1 K, i.e. over three orders of magnitude in specific heat data. The upper critical field slope at Tc is 1.2 T/K, corresponding to a Maki-parameter alpha = 0.64 \pm 0.1. From the upper critical field mu0 Hc2 \approx 6 T at 0 K, we estimate a Ginzburg-Landau coherence length xi \approx 7.4 nm. RbOs2O6 is the second reported metallic AB2O6 type pyrochlore compound after KOs2O6, and one of only three pyrochlore superconductors in addition to Cd2Re2O7 and KOs2O6

    A question of hierarchy: matter effects with atmospheric neutrinos and anti-neutrinos

    Full text link
    It is by now established that neutrinos mix, have (different) non-zero masses, and therefore oscillate. The oscillation parameters themselves, however, are not all well-known. An open problem is that of the neutrino mass hierarchy. We study the possibility of determining the neutrino mass hierarchy with atmospheric neutrinos using an iron calorimeter detector capable of charge identification such as the proposed MONOLITH and ICAL/INO detectors. We find that such detectors are sensitive to the sign of the mass-squared difference, \delta_{32} = m_3^2 - m_2^2, provided the as-yet unknown mixing angle between the first and third generations, \theta_{13}, is greater than 6 degrees (\sin^2 2\theta_{13} > 0.04). A result with a significance greater than 90% CL requires large exposures (more than 500 kton-years) as well as good energy and angular resolution of the detected muons (better than 15%), especially for small \theta_{13}. Hence obtaining definitive results with such a detector is difficult, unless \theta_{13} turns out to be large. In contrast, such detectors can establish a clear oscillation pattern in atmospheric neutrinos in about 150 kton-years, therefore determining the absolute value of \delta_{32} and \sin^2 2 \theta_{23} to within 10%.Comment: 36 pages revtex with 14 eps figures; new section on statistical significance when detector resolution is include

    Neutrinoless Double Beta Decay and Future Neutrino Oscillation Precision Experiments

    Full text link
    We discuss to what extent future precision measurements of neutrino mixing observables will influence the information we can draw from a measurement of (or an improved limit on) neutrinoless double beta decay. Whereas the Delta m^2 corresponding to solar and atmospheric neutrino oscillations are expected to be known with good precision, the parameter theta_{12} will govern large part of the uncertainty. We focus in particular on the possibility of distinguishing the neutrino mass hierarchies and on setting a limit on the neutrino mass. We give the largest allowed values of the neutrino masses which allow to distinguish the normal from the inverted hierarchy. All aspects are discussed as a function of the uncertainty stemming from the involved nuclear matrix elements. The implications of a vanishing, or extremely small, effective mass are also investigated. By giving a large list of possible neutrino mass matrices and their predictions for the observables, we finally explore how a measurement of (or an improved limit on) neutrinoless double beta decay can help to identify the neutrino mass matrix if more precise values of the relevant parameters are known.Comment: 35 pages, 12 figures. Comments and references added. To appear in PR

    Effect of nearest- and next-nearest neighbor interactions on the spin-wave velocity of one-dimensional quarter-filled spin-density-wave conductors

    Full text link
    We study spin fluctuations in quarter-filled one-dimensional spin-density-wave systems in presence of short-range Coulomb interactions. By applying a path integral method, the spin-wave velocity is calculated as a function of on-site (U), nearest (V) and next-nearest (V_2) neighbor-site interactions. With increasing V or V_2, the pure spin-density-wave state evolves into a state with coexisting spin- and charge-density waves. The spin-wave velocity is reduced when several density waves coexist in the ground state, and may even vanish at large V. The effect of dimerization along the chain is also considered.Comment: REVTeX, 11 pages, 9 figure

    Novel vortex lattice transition in d-wave superconductors

    Full text link
    We study the vortex state in a magnetic field parallel to the cc axis in the framework of the extended Ginzburg Landau equation. We find the vortex acquires a fourfold modulation proportional to cos(4ϕ)\cos(4\phi) where ϕ\phi is the angle r{\bf r} makes with the aa-axis. This term gives rise to an attractive interaction between two vortices when they are aligned parallel to (1,1,0)(1,1,0) or (1,1,0)(1,-1,0). We predict the first order vortex lattice transition at B=Hcrκ1Hc2(t)B=H_{cr}\sim \kappa^{-1} H_{c2}(t) from triangular into the square lattice tilted by 4545^\circ from the aa axis. This gives the critical field HcrH_{cr} a few Tesla for YBCO and Bi2212 monocrystals at low temperatures (T10KT\leq 10 K).Comment: 6 pages, 4 figure

    Charge current in ferromagnet - triplet superconductor junctions

    Full text link
    We calculate the tunneling conductance spectra of a ferromagnetic metal / insulator / triplet superconductor from the reflection amplitudes using the Blonder-Tinkham-Klapwijk (BTK) formula. For the triplet superconductor, we assume one special pp-wave order parameter, having line nodes, and two two dimensional ff-wave order parameters with line nodes, breaking the time reversal symmetry. Also we examine nodeless pairing potentials. The evolution of the spectra with the exchange potential depends solely on the topology of the gap. The weak Andreev reflection within the ferromagnet results in the suppression of the tunneling conductance and eliminates the resonances due to the anisotropy of the pairing potential. The tunneling spectra splits asymmetrically with respect to E=0E=0 under the influence of an external magnetic field. The results can be used to distinguish between the possible candidate pairing states of the superconductor Sr2_2RuO4_4.Comment: 15 pages with 8 figure

    Pressure dependence of the magnetization of URu2Si2

    Full text link
    The ground state of URu2Si2 changes from so-called hidden order (HO) to large-moment antiferromagnetism (LMAF) upon applying hydrostatic pressure in excess of 14 kbar. We report the dc-magnetization M(B,T,p) of URu2Si2 for magnetic fields B up to 12 T, temperatures T in the range 2 to 100 K, and pressure p up to 17 kbar. Remarkably, characteristic scales such as the coherence temperature T*, the transition temperature T0, and the anisotropy in the magnetization depend only weakly on the applied pressure. However, the discontinuity in dM/dT at T0, which measures the magnetocaloric effect, decreases nearly 50 % upon applying 17 kbar for M and B parallel to the tetragonal c-axis, while it increases 15-fold for the a-axis. Our findings suggest that the HO and LMAF phases have an astonishing degree of similarity in their physical properties, but a key difference is the magnetocaloric effect near T0 in the basal plane

    Collider Signature of Bulk Neutrinos in Large Extra Dimensions

    Full text link
    We consider the collider signature of right-handed neutrinos propagating in δ\delta (large) extra dimensions, and interacting with Standard Model fields only through a Yukawa coupling to the left-handed neutrino and the Higgs boson. These theories are attractive as they can explain the smallness of the neutrino mass, as has already been shown. We show that if δ\delta is bigger than two, it can result in an enhancement in the production rate of the Higgs boson, decaying either invisibly or to a bb anti-bb quark pair, associated with an isolated high pTp_T charged lepton and missing transverse energy at future hadron colliders, such as the LHC. The enhancement is due to the large number of Kaluza-Klein neutrinos produced in the final state. The observation of the signal event would provide an opportunity to distinguish between the normal and inverted neutrino mass hierarchies, and to determine the absolute scale of neutrino masses by measuring the asymmetry of the observed event numbers in the electron and muon channels.Comment: 31 pages, 13 figures. v2: Added discussion on PDF uncertainties, added reference

    Glucose metabolism and oscillatory behavior of pancreatic islets

    Full text link
    A variety of oscillations are observed in pancreatic islets.We establish a model, incorporating two oscillatory systems of different time scales: One is the well-known bursting model in pancreatic beta-cells and the other is the glucose-insulin feedback model which considers direct and indirect feedback of secreted insulin. These two are coupled to interact with each other in the combined model, and two basic assumptions are made on the basis of biological observations: The conductance g_{K(ATP)} for the ATP-dependent potassium current is a decreasing function of the glucose concentration whereas the insulin secretion rate is given by a function of the intracellular calcium concentration. Obtained via extensive numerical simulations are complex oscillations including clusters of bursts, slow and fast calcium oscillations, and so on. We also consider how the intracellular glucose concentration depends upon the extracellular glucose concentration, and examine the inhibitory effects of insulin.Comment: 11 pages, 16 figure

    What Happens If an Unbroken Flavor Symmetry Exists?

    Full text link
    Without assuming any specific flavor symmetry and/or any specific mass matrix forms, it is demonstrated that if a flavor symmetry (a discrete symmetry, a U(1) symmetry, and so on) exists, we cannot obtain the CKM quark mixing matrix VV and the MNS lepton mixing matrix UU except for those between two families for the case with the completely undegenerated fermion masses, so that we can never give the observed CKM and MNS mixings. Only in the limit of mν1=mν2m_{\nu 1} =m_{\nu 2} (md=msm_d=m_s), we can obtain three family mixing with an interesting constraint Ue3=0U_{e3}=0 (Vub=0V_{ub}=0).Comment: 10 pages, no figure, title and presentation change
    corecore