14 research outputs found

    Epidemiological Differences in the Impact of COVID-19 Vaccination in the United States and China.

    Get PDF
    This study forecasts Coronavirus Disease 2019 (COVID-19) vaccination impact in two countries at different epidemic phases, the United States (US) and China. We assessed the impact of both a vaccine that prevents infection (VES of 95%) and a vaccine that prevents only disease (VEP of 95%) through mathematical modeling. For VES of 95% and gradual easing of restrictions, vaccination in the US reduced the peak incidence of infection, disease, and death by >55% and cumulative incidence by >32% and in China by >77% and >65%, respectively. Nearly three vaccinations were needed to avert one infection in the US, but only one was needed in China. For VEP of 95%, vaccination benefits were half those for VES of 95%. In both countries, impact of vaccination was substantially enhanced with rapid scale-up, vaccine coverage >50%, and slower or no easing of restrictions, particularly in the US. COVID-19 vaccination can flatten, delay, and/or prevent future epidemic waves. However, vaccine impact is destined to be heterogeneous across countries because of an underlying "epidemiologic inequity" that reduces benefits for countries already at high incidence, such as the US. Despite 95% efficacy, actual vaccine impact could be meager in such countries if vaccine scale-up is slow, acceptance is poor, or restrictions are eased prematurely

    Age could be driving variable SARS-CoV-2 epidemic trajectories worldwide.

    Get PDF
    Current geographic spread of documented severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections shows heterogeneity. This study explores the role of age in potentially driving differentials in infection spread, epidemic potential, and rates of disease severity and mortality across countries. An age-stratified deterministic mathematical model that describes SARS-CoV-2 transmission dynamics was applied to 159 countries and territories with a population ≥1 million. Assuming worst-case scenario for the pandemic, the results indicate that there could be stark regional differences in epidemic trajectories driven by differences in the distribution of the population by age. In the African Region (median age: 18.9 years), the median R0 was 1.05 versus 2.05 in the European Region (median age: 41.7 years), and the median (per 100 persons) for the final cumulative infection incidence was 22.5 (versus 69.0), for severe and/or critical disease cases rate was 3.3 (versus 13.0), and for death rate was 0.5 (versus 3.9). Age could be a driver of variable SARS-CoV-2 epidemic trajectories worldwide. Countries with sizable adult and/or elderly populations and smaller children populations may experience large and rapid epidemics in absence of interventions. Meanwhile, countries with predominantly younger age cohorts may experience smaller and slower epidemics. These predictions, however, should not lead to complacency, as the pandemic could still have a heavy toll nearly everywhere

    Modeling the population-level impact of treatment on COVID-19 disease and SARS-CoV-2 transmission

    Get PDF
    Different COVID-19 treatment candidates are under development, and some are becoming available including two promising drugs from Merck and Pfizer. This study provides conceptual frameworks for the effects of three types of treatments, both therapeutic and prophylactic, and to investigate their population-level impact, to inform drug development, licensure, decision-making, and implementation. Different drug efficacies were assessed using an age-structured mathematical model describing SARS-CoV-2 transmission and disease progression, with application to the United States as an illustrative example. Severe and critical infection treatment reduces progression to COVID-19 severe and critical disease and death with small number of treatments needed to avert one disease or death. Post-exposure prophylaxis treatment had a large impact on flattening the epidemic curve, with large reductions in infection, disease, and death, but the impact was strongly age dependent. Pre-exposure prophylaxis treatment had the best impact and effectiveness, with immense reductions in infection, disease, and death, driven by the robust control of infection transmission. Effectiveness of both pre-exposure and post-exposure prophylaxis treatments was disproportionally larger when a larger segment of the population was targeted than a specific age group. Additional downstream potential effects of treatment, beyond the primary outcome, enhance the population-level impact of both treatments. COVID-19 treatments are an important modality in controlling SARS-CoV-2 disease burden. Different types of treatment act synergistically for a larger impact, for these treatments and vaccination.The authors are grateful for support provided by the Biomedical Research Program and the Biostatistics, Epidemiology, and Biomathematics Research Core, both at Weill Cornell Medicine-Qatar. This publication was made possible by extension of models developed through the National Priorities Research Program (NPRP), Qatar, grant number 9–040-3–008 (Principal investigator: LJA) and NPRP grant number 12S-0216–190094 (Principal investigator: LJA) from the Qatar National Research Fund (a member of Qatar Foundation; https://www.qnrf.org). The statements made herein are solely the responsibility of the authors. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Estimates of global SARS-CoV-2 infection exposure, infection morbidity, and infection mortality rates in 2020

    Get PDF
    We aimed to estimate, albeit crudely and provisionally, national, regional, and global proportions of respective populations that have been infected with SARS-CoV-2 in the first year after the introduction of this virus into human circulation, and to assess infection morbidity and mortality rates, factoring both documented and undocumented infections. The estimates were generated by applying mathematical models to 159 countries and territories. The percentage of the world's population that has been infected as of 31 December 2020 was estimated at 12.56% (95% CI: 11.17–14.05%). It was lowest in the Western Pacific Region at 0.66% (95% CI: 0.59–0.75%) and highest in the Americas at 41.92% (95% CI: 37.95–46.09%). The global infection fatality rate was 10.73 (95% CI: 10.21–11.29) per 10,000 infections. Globally per 1000 infections, the infection acute-care bed hospitalization rate was 19.22 (95% CI: 18.73–19.51), the infection ICU bed hospitalization rate was 4.14 (95% CI: 4.10–4.18). If left unchecked with no vaccination and no other public health interventions, and assuming circulation of only wild-type variants and no variants of concern, the pandemic would eventually cause 8.18 million deaths (95% CI: 7.30–9.18), 163.67 million acute-care hospitalizations (95% CI: 148.12–179.51), and 33.01 million ICU hospitalizations (95% CI: 30.52–35.70), by the time the herd immunity threshold is reached at 60–70% infection exposure. The global population remained far below the herd immunity threshold by end of 2020. Global epidemiology reveals immense regional variation in infection exposure and morbidity and mortality rates.- Biostatistics, Epidemiology, and Biomathematics Research Core at Weill Cornell Medicine-Qatar - 12S-0216-190094, 9-040-3-008. - UK Research and Innovation - ES/P010873/1. - Qatar National Research Fund - Qatar National Library provided fund for open access

    Analyzing inherent biases in SARS-CoV-2 PCR and serological epidemiologic metrics

    Get PDF
    Background: Prospective observational data show that infected persons with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain polymerase chain reaction (PCR) positive for a prolonged duration, and that detectable antibodies develop slowly with time. We aimed to analyze how these effects can bias key epidemiological metrics used to track and monitor SARS-CoV-2 epidemics. Methods: An age-structured mathematical model was constructed to simulate progression of SARS-CoV-2 epidemics in populations. PCR testing to diagnose infection and cross-sectional surveys to measure seroprevalence were also simulated. Analyses were conducted on simulated outcomes assuming a natural epidemic time course and an epidemic in presence of interventions. Results: The prolonged PCR positivity biased the epidemiological measures. There was a lag of 10 days between the true epidemic peak and the actually-observed peak. Prior to epidemic peak, PCR positivity rate was twofold higher than that based only on current active infection, and half of those tested positive by PCR were in the prolonged PCR positivity stage after infection clearance. Post epidemic peak, PCR positivity rate poorly predicted true trend in active infection. Meanwhile, the prolonged PCR positivity did not appreciably bias estimation of the basic reproduction number R0. The time delay in development of detectable antibodies biased measured seroprevalence. The actually-observed seroprevalence substantially underestimated true prevalence of ever infection, with the underestimation being most pronounced around epidemic peak. Conclusions: Caution is warranted in interpreting PCR and serological testing data, and any drawn inferences need to factor the effects of the investigated biases for an accurate assessment of epidemic dynamics

    Characterizing key attributes of the epidemiology of COVID-19 in China: Model-based estimations

    Get PDF
    AbstractBackgroundA novel coronavirus strain, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in China in late 2019. The resulting disease, Coronavirus Disease 2019 (COVID-2019), soon became a pandemic. This study aims to characterize key attributes of the epidemiology of this infection in China.MethodsAn age-stratified mathematical model was constructed to describe the transmission dynamics and estimate the age-specific differences in the biological susceptibility to the infection, age-assortativeness in transmission mixing, case fatality rate (CFR), and transition in rate of infectious contacts (and reproduction number R0) following introduction of mass interventions.ResultsThe model estimated the infectious contact rate in early epidemic at 0.59 contacts per day (95% uncertainty interval (UI)=0.48-0.71). Relative to those 60-69 years of age, susceptibility to the infection was only 0.06 in those ≤19 years, 0.34 in 20-29 years, 0.57 in 30-39 years, 0.69 in 40-49 years, 0.79 in 50-59 years, 0.94 in 70-79 years, and 0.88 in ≥80 years. The assortativeness in transmission mixing by age was very limited at 0.004 (95% UI=0.002-0.008). Final CFR was 5.1% (95% UI=4.8-5.4%). R0 rapidly declined from 2.1 (95% UI=1.8-2.4) to 0.06 (95% UI=0.05-0.07) following onset of interventions.ConclusionAge appears to be a principal factor in explaining the patterns of COVID-19 transmission dynamics in China. The biological susceptibility to the infection seems limited among children, intermediate among young to mid-age adults, but high among those &gt;50 years of age. There was no evidence for differential contact mixing by age, consistent with most transmission occurring in households rather than in schools or workplaces.</jats:sec

    Characterizing key attributes of COVID-19 transmission dynamics in China's original outbreak: Model-based estimations.

    Get PDF
    A novel coronavirus strain, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in China. This study aims to characterize key attributes of SARS-CoV-2 epidemiology as the infection emerged in China. An age-stratified mathematical model was constructed to describe transmission dynamics and estimate age-specific differences in biological susceptibility to infection, age-assortativeness in transmission mixing, and transition in rate of infectious contacts (and reproduction number R 0) following introduction of mass interventions. The model estimated the infectious contact rate in early epidemic at 0.59 contacts/day (95% uncertainty interval-UI = 0.48-0.71). Relative to those 60-69 years, susceptibility was 0.06 in those ?19 years, 0.34 in 20-29 years, 0.57 in 30-39 years, 0.69 in 40-49 years, 0.79 in 50-59 years, 0.94 in 70-79 years, and 0.88 in ?80 years. Assortativeness in transmission mixing by age was limited at 0.004 (95% UI = 0.002-0.008). R 0 rapidly declined from 2.1 (95% UI = 1.8-2.4) to 0.06 (95% UI = 0.05-0.07) following interventions' onset. Age appears to be a principal factor in explaining the transmission patterns in China. The biological susceptibility to infection seems limited among children but high among those >50 years. There was no evidence for differential contact mixing by age

    Epidemiological Impact of SARS-CoV-2 Vaccination: Mathematical Modeling Analyses.

    Get PDF
    This study aims to inform SARS-CoV-2 vaccine development/licensure/decision-making/implementation, using mathematical modeling, by determining key preferred vaccine product characteristics and associated population-level impacts of a vaccine eliciting long-term protection. A prophylactic vaccine with efficacy against acquisition (VES) ≥70% can eliminate the infection. A vaccine with VES <70% may still control the infection if it reduces infectiousness or infection duration among those vaccinated who acquire the infection, if it is supplemented with <20% reduction in contact rate, or if it is complemented with herd-immunity. At VES of 50%, the number of vaccinated persons needed to avert one infection is 2.4, and the number is 25.5 to avert one severe disease case, 33.2 to avert one critical disease case, and 65.1 to avert one death. The probability of a major outbreak is zero at VES ≥70% regardless of the number of virus introductions. However, an increase in social contact rate among those vaccinated (behavior compensation) can undermine vaccine impact. In addition to the reduction in infection acquisition, developers should assess the natural history and disease progression outcomes when evaluating vaccine impact

    SARS-CoV-2 infection hospitalization, severity, criticality, and fatality rates in Qatar.

    Get PDF
    The SARS-CoV-2 pandemic resulted in considerable morbidity and mortality as well as severe economic and societal disruptions. Despite scientific progress, true infection severity, factoring both diagnosed and undiagnosed infections, remains poorly understood. This study aimed to estimate SARS-CoV-2 age-stratified and overall morbidity and mortality rates based on analysis of extensive epidemiological data for the pervasive epidemic in Qatar, a country where < 9% of the population are ≥ 50 years. We show that SARS-CoV-2 severity and fatality demonstrate a striking age dependence with low values for those aged < 50 years, but rapidly growing rates for those ≥ 50 years. Age dependence was particularly pronounced for infection criticality rate and infection fatality rate. With Qatar's young population, overall SARS-CoV-2 severity and fatality were not high with < 4 infections in every 1000 being severe or critical and < 2 in every 10,000 being fatal. Only 13 infections in every 1000 received any hospitalization in acute-care-unit beds and < 2 in every 1000 were hospitalized in intensive-care-unit beds. However, we show that these rates would have been much higher if Qatar's population had the demographic structure of Europe or the United States. Epidemic expansion in nations with young populations may lead to considerably lower disease burden than currently believed

    SARS-CoV-2 infection hospitalization, severity, criticality, and fatality rates

    Get PDF
    AbstractBackgroundThis study aimed to estimate the age-stratified and overall morbidity and mortality rates of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection based on an analysis of the pervasive SARS-CoV-2 epidemic in Qatar, a country with &lt;9% of the population being ≥50 years of age.MethodsInfection disease outcomes were investigated using a Bayesian approach applied to an age-structured mathematical model describing SARS-CoV-2 transmission and disease progression in the population. The model was fitted to infection and disease time-series and age-stratified data. Two separate criteria for classifying morbidity were used: one based on actual recorded hospital admission (acute-care or intensive-care-unit hospitalization) and one based on clinical presentation as per World Health Organization classification of disease severity or criticality.ResultsAll outcomes showed very strong age dependence, with low values for those &lt;50 years of age, but rapidly growing rates for those ≥50 years of age. The strong age dependence was particularly pronounced for infection criticality rate and infection fatality rate. Infection acute-care and intensive-care-unit bed hospitalization rates were estimated at 13.10 (95% CI: 12.82-13.24) and 1.60 (95% CI: 1.58-1.61) per 1,000 infections, respectively. Infection severity and criticality rates were estimated at 3.06 (95% CI: 3.01-3.10) and 0.68 (95% CI: 0.67-0.68) per 1,000 infections, respectively. Infection fatality rate was estimated at 1.85 (95% CI: 1.74-1.95) per 10,000 infections.ConclusionsSARS-CoV-2 severity and fatality in Qatar was not high and demonstrated a very strong age dependence with &lt;4 infections in every 1,000 being severe or critical and &lt;2 in every 10,000 being fatal. Epidemic expansion in nations with young populations may lead to lower disease burden than previously thought.</jats:sec
    corecore