7 research outputs found

    Properties of superhard nanostructured coatings Ti-Hf-Si-N

    Get PDF
    New superhard coatings based on Ti-Hf-Si-N featuring high physical and mechanical properties were fabricated. We employed a vacuum-arc source with HF stimulation and a cathode sintered from Ti-Hf-Si. Nitrides were fabricated using atomic nitrogen (N) or a mixture of Ar/N, which were leaked-in a chamber at various pressures and applied to a substrate potentials. RBS, SIMS, GT-MS, SEM with EDXS, XRD, and nanoindentation were employed as analyzing methods of chemical and phase composition of thin films. We also tested tribological and corrosion properties. The resulting coating was a two-phase, nanostructured nc-(Ti, Hf)N and α-Si3N4. Sizes of substitution solid solution nanograins changed from 3.8 to 6.5 nm, and an interface thickness surrounding α-Si3N4 varied from 1.2 to 1.8 nm. Coatings hardness, which was measured by nanoindentation was from 42.7 GPa to 48.6 GPa, and an elastic modulus was E = (450 to 515) GPa. The films stoichiometry was defined for various deposition conditions. It was found that in samples with superhard coatings of 42.7 to 48.6GPa hardness and lower roughness in comparison with other series of samples, friction coefficient was equal to 0.2, and its value did not change over all depth (thickness) of coatings. A film adhesion to a substrate was essentially high and reached 25MPa. В работе получены новые сверхтвердые покрытия на основе Ti-Hf-Si-N с высокими физико-механическими свойствами. В процессе синтеза методом вакуумно-дугового осаждения с применением ВЧ напряжения распылялся цельнолитой катод Ti-Hf-Si. Нитриды формировались в среде атомарного азота (N) или в смеси Ar/N, которые напускались в камеру при различных давлениях. Химический и фазовый составы тонких пленок анализировался методами RBS, SIMS, GT-MS, SEM с EDXS, РСА, а твердость определялась наноиндентированием. Исследовались трибологические и коррозионные свойства покрытий. Полученные покрытия являются двухфазными наноструктурированными nс-(Ti, Hf)N и α-Si3N4. Размеры нанозерен твердого раствора варьировались от 3,8 до 6,5 нм, а толщина окружающей оболочки α-Si3N4 менялась от 1,2 до 1,8 нм. Твердость покрытий H составляла 42,7 48,6 ГПа, а модуль упругости Е принимал значения от 450 ГПа до 515 ГПа. Определена стехиометрия пленок при различных условиях осаждения. Установлено, что в образцах сверхтвердых покрытий с твердостью 42,7 48.6 ГПа наблюдалась более низкая шероховатость по сравнению с другими образцами, коэффициент трения составлял 0,2, и его значение не изменялось по всей глубине (толщине) покрытия. Адгезия пленки к подложке достигла 25 МПа. У роботі отримані нові надтверді покриття на основі Ti-Hf-Sі-N з високими фізико-механічними властивостями. У процесі синтезу методом вакуумно-дугового осадження із застосуванням ВЧ напруги розпорошувався суцільнолитий катод Tі-Hf-Sі. Нітриди формувалися у середовищі атомарного азоту (N) або у суміші Ar/N, які напускалися у камеру при різних тисках. Хімічний і фазовий склади тонких плівок аналізувалися методами RBS, SІMS, GT-MS, SEM з EDXS, РСА, а твердість визначалася наноіндентуванням. Досліджувалися трибологічні та корозійні властивості покриттів. Отримані покриття є двофазними наноструктурованими nс-(Tі, Hf)N і -Sі3N4. Розміри нанозерен твердого розчину варіювалися від 3,8 до 6,5 нм, а товщина навколишньої оболонки -Sі3N4 змінювалася від 1,2 до 1,8 нм. Твердість покриттів H становила 42,7 48,6 ГПа, а модуль пружності Е приймав значення від 450 ГПа до 515 ГПа. Визначено стехіометрію плівок при різних умовах осадження. Встановлено, що у зразках надтвердих покриттів із твердістю 42,7 48.6 ГПа спостерігалася нижча шорсткість у порівнянні з іншими зразками, коефіцієнт тертя становив 0,2, і його значення не змінювалося за глибиною (товщиною) покриття. Адгезія плівки до підкладки досягла 25 МПа

    physical and mechanical properties of the nanocomposite and combined Ti-N-Si /WC-Co-Cr and Ti-N-Si/(CR3C2)75-(NiCr)25 coatings

    Get PDF
    Two types of the combined nanocomposite coatings (Ti-N-Si /WC-Co-Cr and Ti-N-Si/ (Cr3C2Ni)75-(NiCr)25) of 160-320 μm thickness were produced using two deposition techniques: the cumulative-detonation and the vacuum-arc deposition with the high-frequency discharge. This gives the possibility (using the combined coatings) to restore the size of worn areas of the tools and demonstrate the high corrosion and wear resistance, to increase the hardness, modulus of elasticity, and plasticity index. Composition of the top coating varied from Ti = 60 at.%, N = 30 at.%, and Si = 10 at.% to Ti = 75 at.%, N = 20 at.%, and Si = 5 at.%. In the first series of coatings the following phases were obtained: (Ti;Si) and TiN in thin top coating and WC and W2C in thick bottom coating. The second series gives (Ti;Si)N and TiN in top coating; Cr3Ni2 and pure Cr in bottom coating; and small amount of Ti19O17 in the transition region between thin and thick coatings. For the first series the grain size achieved 25 nm at the hardness of 38 GPa. For the second series the grain size was 15 nm at the hardness of 42 GРa ± 4 GPa. It is shown that the corrosion resistance in salt solution and acid media increases with the wear decrease as a result of the cylinder friction over the surface of combined coating. При цитуванні документа, використовуйте посилання http://essuir.sumdu.edu.ua/handle/123456789/9351Отримано два види комбінованих нанокомпозитних покриттів (Ti -N-Si /WC-Co-Cr; TI-N -Si/(Cr3C2Ni)75-(NiCr)25) товщиною 160 ÷ 320 мкм з використанням двох технологій осадження: кумулятивно-детонаційним з подальшим осадженням за допомогою вакуумно-дугового джерела у ВЧ розряді. Що дає можливість, за допомогою комбінованого покриття, відновлювати розмір зношених ділянок виробів із захистом їх від корозії, зносу, при цьому збільшити твердість, модуль пружності, індекс пластичності. Склад верхнього покриття змінювали від Ti = 60 %, N ≈ 30 %, Si = 10 % до Si = 5 %; N = 20 %, Ti = 75 %. У першій серії покриттів виявлені фази (Ti, Si) і TiN в тонкому верхньому покритті і WC і W2C в товстому нижньому покритті. У другій серії, у верхньому покритті були отримані (Ti, Si) N і TiN, а в нижньому покритті Cr3Ni2, чистий Cr; невелика кількість Ti19O17 в перехідній області між тонким і товстим покриттям. Розмір зерен в першому варіанті тонкого покриття складав 25 нм, при твердості 35 ГПа, а в другому варіанті розмір зерен кристалітів складав 15 нм при твердості Н = 42 ± 3,6 ГПа. Показано, що корозійна стійкість в сольовому розчині і кислотному середовищах збільшується, при зменшенні зносу в результаті тертя циліндра по поверхні комбінованого покриття. При цитировании документа, используйте ссылку http://essuir.sumdu.edu.ua/handle/123456789/9351Получено два вида комбинированных нанокомпозитных покрытий (Ti-N-Si/WC-Co-Cr; Ti-N-Si/(Cr3C2Ni)75-(NiCr)25) толщиной 160 ÷ 320 мкм с использованием двух технологий осаждения: кумулятивно-детонационным с последующим осаждением с помощью вакуумно-дугового источника в ВЧ разряде. Что даёт возможность, при помощи, комбинированного покрытия восстанавливать размер изношенных участков изделий с защитой их от коррозии, износа, при этом увеличить твердость, модуль упругости, индекс пластичности. Состав верхнего покрытия изменяли от Ti = 60 %, N ≈ 30 %, Si = 10 % до Si = 5 %; N = 20 %, Ti = 75 %. В первой серии покрытий обнаружены фазы (Ti; Si) и TiN в тонком верхнем покрытии и WC и W2C в толстом нижнем покрытии. Во второй серии, в верхнем покрытии были получены (Ti, Si)N и TiN, а в нижнем покрытии Cr3Ni2, чистый Cr; небольшое количество Ti19O17 в переходной области между тонким и толстым покрытием. Размер, зерен в первом варианте тонкого покрытия, составлял 25 нм, при твёрдости 35 ГПа, а во втором варианте размер зёрен кристаллитов составлял 15 нм при твёрдости Н = 42 ÷ 3,6 ГПа. Показано, что коррозионная стойкость в солевом растворе и кислотной средах увеличивается при уменьшении износа в результате трения цилиндра по поверхности комбинированного покрытия. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/935

    Intelligent approach to power system management during well drilling in terms of environmental impact

    No full text
    An autonomous hybrid power system is an intelligent power installation that provides electricity to isolated consumers without being connected to the power grid. The introduction of autonomous hybrid power systems in the oil and gas industry is considered as an option to improve energy and environmental security. As a rule, oil and gas fields are located remotely and off the grid, and therefore electricity is generated using diesel generators. This article discusses the possibility of reducing emissions of pollutants into the atmosphere by using an autonomous hybrid installation as a source of electrical energy

    Properties of superhard nanostructured coatings Ti-Hf-Si-N

    No full text
    New superhard coatings based on Ti-Hf-Si-N featuring high physical and mechanical properties were fabricated. We employed a vacuum-arc source with HF stimulation and a cathode sintered from Ti-Hf-Si. Nitrides were fabricated using atomic nitrogen (N) or a mixture of Ar/N, which were leaked-in a chamber at various pressures and applied to a substrate potentials. RBS, SIMS, GT-MS, SEM with EDXS, XRD, and nanoindentation were employed as analyzing methods of chemical and phase composition of thin films. We also tested tribological and corrosion properties. The resulting coating was a two-phase, nanostructured nc-(Ti, Hf)N and α-Si3N4. Sizes of substitution solid solution nanograins changed from 3.8 to 6.5 nm, and an interface thickness surrounding α-Si3N4 varied from 1.2 to 1.8 nm. Coatings hardness, which was measured by nanoindentation was from 42.7 GPa to 48.6 GPa, and an elastic modulus was E = (450 to 515) GPa. The films stoichiometry was defined for various deposition conditions. It was found that in samples with superhard coatings of 42.7 to 48.6GPa hardness and lower roughness in comparison with other series of samples, friction coefficient was equal to 0.2, and its value did not change over all depth (thickness) of coatings. A film adhesion to a substrate was essentially high and reached 25MPa. В работе получены новые сверхтвердые покрытия на основе Ti-Hf-Si-N с высокими физико-механическими свойствами. В процессе синтеза методом вакуумно-дугового осаждения с применением ВЧ напряжения распылялся цельнолитой катод Ti-Hf-Si. Нитриды формировались в среде атомарного азота (N) или в смеси Ar/N, которые напускались в камеру при различных давлениях. Химический и фазовый составы тонких пленок анализировался методами RBS, SIMS, GT-MS, SEM с EDXS, РСА, а твердость определялась наноиндентированием. Исследовались трибологические и коррозионные свойства покрытий. Полученные покрытия являются двухфазными наноструктурированными nс-(Ti, Hf)N и α-Si3N4. Размеры нанозерен твердого раствора варьировались от 3,8 до 6,5 нм, а толщина окружающей оболочки α-Si3N4 менялась от 1,2 до 1,8 нм. Твердость покрытий H составляла 42,7 48,6 ГПа, а модуль упругости Е принимал значения от 450 ГПа до 515 ГПа. Определена стехиометрия пленок при различных условиях осаждения. Установлено, что в образцах сверхтвердых покрытий с твердостью 42,7 48.6 ГПа наблюдалась более низкая шероховатость по сравнению с другими образцами, коэффициент трения составлял 0,2, и его значение не изменялось по всей глубине (толщине) покрытия. Адгезия пленки к подложке достигла 25 МПа. У роботі отримані нові надтверді покриття на основі Ti-Hf-Sі-N з високими фізико-механічними властивостями. У процесі синтезу методом вакуумно-дугового осадження із застосуванням ВЧ напруги розпорошувався суцільнолитий катод Tі-Hf-Sі. Нітриди формувалися у середовищі атомарного азоту (N) або у суміші Ar/N, які напускалися у камеру при різних тисках. Хімічний і фазовий склади тонких плівок аналізувалися методами RBS, SІMS, GT-MS, SEM з EDXS, РСА, а твердість визначалася наноіндентуванням. Досліджувалися трибологічні та корозійні властивості покриттів. Отримані покриття є двофазними наноструктурованими nс-(Tі, Hf)N і -Sі3N4. Розміри нанозерен твердого розчину варіювалися від 3,8 до 6,5 нм, а товщина навколишньої оболонки -Sі3N4 змінювалася від 1,2 до 1,8 нм. Твердість покриттів H становила 42,7 48,6 ГПа, а модуль пружності Е приймав значення від 450 ГПа до 515 ГПа. Визначено стехіометрію плівок при різних умовах осадження. Встановлено, що у зразках надтвердих покриттів із твердістю 42,7 48.6 ГПа спостерігалася нижча шорсткість у порівнянні з іншими зразками, коефіцієнт тертя становив 0,2, і його значення не змінювалося за глибиною (товщиною) покриття. Адгезія плівки до підкладки досягла 25 МПа
    corecore