109 research outputs found

    Role of acute viral hepatitis as a confounding factor in antituberculosis treatment induced hepatotoxicity

    Get PDF
    Background & Objective: Drug induced hepatotoxicity (DIH) is an important and commonly encountered adverse effect with antituberculosis (anti-TB) treatment. Acute viral hepatitis (AVH) is an important confounding reason which clinically, biochemically and histologically mimics DIH. Methods: The contributory role of acute viral hepatitis as a confounding factor in patients with normal baseline liver functions who developed acute hepatitis while receiving short-course anti-TB treatment was prospectively studied. The sera of all patients who developed acute hepatitis were analysed for markers for hepatitis A, B, C and E viruses. Results: Viral hepatitis was present in 15 of the 102 (14.7%) patients who developed acute hepatitis while receiving anti-TB treatment with hepatitis E virus being the most common cause Later onset of acute hepatitis [58 (5-133) vs. 26 (3-221) days; P=0.04], large elevations in aspartate aminotransferase (AST) [371 (30-2643) vs. 212 (63-1990 IU/l); P=0.03] and alanine aminotransferase (ALT) [388 (31-2997) vs. 225 (52- 1670 IU/l); P= 0.002] and a longer time for normalization of deranged liver functions [36.7 ± 13.3 vs. 24.5 ± 19.3 days; P=0.02] indicated acute viral hepatitis as the cause of liver function derangement. Interpretation & Conclusion: Our findings showed AVH in 14.7 per cent patients who developed hepatotoxicity while an anti-TB treatment. Therefore, in endemic areas, viral hepatitis should be sought after and excluded in all patients suspected to have DIH before attributing the hepatotoxic effect to the anti-TB drugs

    Atomic-resolution spectroscopic imaging of ensembles of nanocatalyst particles across the life of a fuel cell

    Full text link
    The thousandfold increase in data-collection speed enabled by aberration-corrected optics allows us to overcome an electron microscopy paradox - how to obtain atomic-resolution chemical structure in individual nanoparticles, yet record a statistically significant sample from an inhomogeneous population. This allowed us to map hundreds of Pt-Co nanoparticles to show atomic-scale elemental distributions across different stages of the catalyst aging in a proton-exchange-membrane fuel cell, and relate Pt-shell thickness to treatment, particle size, surface orientation, and ordering.Comment: 28 pages, 5 figures, accepted, nano letter

    Gluten Induces Subtle Histological Changes in Duodenal Mu-cosa of Patients with Non-Coeliac Gluten Sensitivity: A Multi-center Study

    Get PDF
    Histological changes induced by gluten in the duodenal mucosa of patients with non-coeliac gluten sensitivity (NCGS) are poorly defined. Objectives: To evaluate the structural and inflammatory features of NCGS compared to controls and coeliac disease (CeD) with milder enteropathy (Marsh I-II). Methods: Well-oriented biopsies of 262 control cases with normal gastroscopy and histologic findings, 261 CeD, and 175 NCGS biopsies from 9 contributing countries were examined. Villus height (VH, in μm), crypt depth (CrD, in μm), villus-to-crypt ratios (VCR), IELs (intraepithelial lymphocytes/100 enterocytes), and other relevant histological, serologic, and demographic parameters were quantified. Results: The median VH in NCGS was significantly shorter (600, IQR: 400−705) than controls (900, IQR: 667−1112) (p < 0.001). NCGS patients with Marsh I-II had similar VH and VCR to CeD [465 µm (IQR: 390−620) vs. 427 µm (IQR: 348−569, p = 0·176)]. The VCR in NCGS with Marsh 0 was lower than controls (p < 0.001). The median IEL in NCGS with Marsh 0 was higher than controls (23.0 vs. 13.7, p < 0.001). To distinguish Marsh 0 NCGS from controls, an IEL cut-off of 14 showed 79% sensitivity and 55% specificity. IEL densities in Marsh I-II NCGS and CeD groups were similar. Conclusion: NCGS duodenal mucosa exhibits distinctive changes consistent with an intestinal response to luminal antigens, even at the Marsh 0 stage of villus architecture

    Foregut caustic injuries: results of the world society of emergency surgery consensus conference

    Full text link

    Metabolism of the colonic mucosa in patients with inflammatory bowel diseases: an in vitro proton magnetic resonance spectroscopy study

    No full text
    Metabolism of the colonic mucosa of patients with ulcerative colitis (UC; n=31) and Crohn's disease (CD; n=26) and normal mucosa (control, n=26) was investigated using in vitro high-resolution proton magnetic resonance spectroscopy. Of the 31 UC patients, 20 were in the active phase and 11 were in the remission phase of the disease. Out of 26 CD patients, 20 were in the active phase, while 6 were in the remission phase of the disease. Twenty-nine metabolites were assigned unambiguously in the perchloric acid extract of colonic mucosa. In the active phase of UC and CD, significantly lower (P=.05) concentration of amino acids (isoleucine, leucine, valine, alanine, glutamate and glutamine), membrane components (choline, glycerophosphorylcholine and myo-inositol), lactate and succinate were observed compared to normal mucosa of controls. Patients in the active phase of UC and CD also showed increased level of a-glucose compared to normal mucosa. Altered level of metabolites indicates decreased protein and carbohydrate metabolism, thereby decreased energy status and deterioration of mucosa integrity during chronic inflammation. In the remission phase of UC and CD, the concentration of most of the metabolites was similar to controls except for lower values of lactate, glycerophosphorylcholine and myo-inositol in UC and Lac in CD. Formate was significantly lower in patients with the active phase of UC compared to patients with the active phase of CD, suggesting the potential of in vitro MRS in the differentiation of these two diseases
    corecore