7 research outputs found

    Characterization of four new compounds from protea cynaroides leaves and their tyrosinase inhibitory potential

    Get PDF
    Protea cynaroides (king protea) is a flowering plant that belongs to the Proteaceae family. This multi-stemmed shrub is the national flower of South Africa and has important economic and medicinal values. Traditionally, the main therapeutic benefits of this plant species include the treatment of cancer, bladder, and kidney ailments. There are very limited reports on the isolation of phytochemicals and their biological evaluation from P. cynaroides. In this study, the leaves of P. cynaroides were air-dried at room temperature, powdered, and extracted with 80% methanol followed by solvent fractionation (hexane, dichloromethane, ethyl acetate, and butanol). The ethyl acetate and butanol extracts were chromatographed and afforded four new (1–4) and four known (5–8) compounds, whose structures were characterized accordingly as 3,4-bis(4-hydroxybenzoyl)-1,5-anhydro-D-glucitol (1), 4-hydroxybenzoyl-1,5-anhydro-D-glucitol (2), 2-(hydroxymethyl)-4-oxo-4H-pyran-3-yl-6-O-benzoate-β-D-glucopyranoside (3), 3-hydroxy-7,8-dihydro-β-ionone 3-O-β-D-glucopyranoside (4), 4-hydroxybenzoic acid (5), 1,5-anhydro-D-glucitol (6), 3,4-dihydroxybenzoic acid (7), and 3-hydroxykojic acid (8)

    The MeerKAT Galaxy Cluster Legacy Survey: I. Survey overview and highlights

    Get PDF
    Please abstract in the article.The South African Radio Astronomy Observatory (SARAO), the National Research Foundation (NRF), the National Radio Astronomy Observatory, US National Science Foundation, the South African Research Chairs Initiative of the DSI/NRF, the SARAO HCD programme, the South African Research Chairs Initiative of the Department of Science and Innovation.http://www.aanda.orghj2022Physic

    <i>Helichrysum</i> Genus and Compound Activities in the Management of Diabetes Mellitus

    No full text
    The global management of diabetes mellitus (DM) involves the administration of recommended anti-diabetic drugs in addition to a non-sedentary lifestyle upon diagnosis. Despite the success recorded from these synthetic drugs, the traditional method of treatment using medicinal plants is increasingly accepted by the locals due to its low cost and the perceived no side effects. Helichrysum species are used in folk medicine and are documented for the treatment of DM in different regions of the world. This study reviews Helichrysum species and its compounds’ activities in the management of DM. An extensive literature search was carried out, utilizing several scientific databases, ethnobotanical books, theses, and dissertations. About twenty-two Helichrysum species were reported for the treatment of diabetes in different regions of the world. Among these Helichrysum species, only fifteen have been scientifically investigated for their antidiabetic activities, and twelve compounds were identified as bioactive constituents for diabetes. This present review study will be a useful tool for scientists and health professionals working in the field of pharmacology and therapeutics to develop potent antidiabetic drugs that are devoid of side effects

    Characterization of Four New Compounds from Protea cynaroides Leaves and Their Tyrosinase Inhibitory Potential

    No full text
    Protea cynaroides (king protea) is a flowering plant that belongs to the Proteaceae family. This multi-stemmed shrub is the national flower of South Africa and has important economic and medicinal values. Traditionally, the main therapeutic benefits of this plant species include the treatment of cancer, bladder, and kidney ailments. There are very limited reports on the isolation of phytochemicals and their biological evaluation from P. cynaroides. In this study, the leaves of P. cynaroides were air-dried at room temperature, powdered, and extracted with 80% methanol followed by solvent fractionation (hexane, dichloromethane, ethyl acetate, and butanol). The ethyl acetate and butanol extracts were chromatographed and afforded four new (1&ndash;4) and four known (5&ndash;8) compounds, whose structures were characterized accordingly as 3,4-bis(4-hydroxybenzoyl)-1,5-anhydro-D-glucitol (1), 4-hydroxybenzoyl-1,5-anhydro-D-glucitol (2), 2-(hydroxymethyl)-4-oxo-4H-pyran-3-yl-6-O-benzoate-&beta;-D-glucopyranoside (3), 3-hydroxy-7,8-dihydro-&beta;-ionone 3-O-&beta;-D-glucopyranoside (4), 4-hydroxybenzoic acid (5), 1,5-anhydro-D-glucitol (6), 3,4-dihydroxybenzoic acid (7), and 3-hydroxykojic acid (8). The structural elucidation of the isolated compounds was determined based on 1D and 2D NMR, FTIR, and HRMS spectroscopy, as well as compared with the available literature data. The tyrosinase inhibitory activities of the extracts and isolated compounds were also determined. According to the results, compounds 7 and 8 exhibited potent competitive tyrosinase inhibitory activity against L-tyrosine substrates with IC50 values of 0.8776 &plusmn; 0.012 and 0.7215 &plusmn; 0.090 &micro;g/mL compared to the control (kojic acid, IC50 = 0.8347 &plusmn; 0.093), respectively. This study is the first chemical investigation of compounds 1&ndash;4 from a natural source and the first report of the biological evaluation of compounds 1&ndash;5 against the tyrosinase enzyme. The potent anti-tyrosinase activity exhibited by P. cynaroides constituents will support future exploration of the plant in the cosmetic field upon further biological and clinical investigations

    Phytochemical Investigation and Biological Studies on Selected Searsia Species

    No full text
    Searsia is the more recent name for the genus Rhus, which contains over 250 individual species of flowering plants in the family Anacardiaceae. Several Searsia species are used in folk medicine and have been reported to exhibit various biological activities. Although known to exhibit different terpenoids and flavonoids, the chemistry of the Searsia genus is not comprehensively studied due to the structural complexity of the compounds. In this study, the extraction, isolation, and identification of secondary metabolites from three Searsia species (Searsia glauca, S. lucida, and S. laevigata) were conducted using chromatographic and spectroscopic techniques and afforded five known terpenes, viz., moronic acid (1), 21&beta;-hydroxylolean-12-en-3-one (2), lupeol (11), &alpha;-amyrin (9), and &beta;-amyrin (10), in addition to six known flavonoids, myricetin-3-O-&beta;-galactopyranoside (3), rutin (4), quercetin (5), apigenin (6), amentoflavone (7), and quercetin-3-O-&beta;-glucoside (8). The structural elucidation of the isolated compounds was determined based on NMR (1D and 2D) and comparison with the data in the literature. Biological assays, such as antioxidant and enzyme inhibition activity assays, were conducted on the plant extracts and the isolated compounds. The antioxidant capacities of hexane, dichloromethane, ethyl acetate, methanol, and butanol main extracts were investigated using ferric ion reducing power (FRAP), oxygen radical absorbance capacity (ORAC), and Trolox equivalent antioxidant capacity (TEAC) assays. The results showed high antioxidant activities for methanol and butanol extracts of the three plants. The isolated compounds were tested against alpha-glucosidase and alpha-amylase, and the results showed the potent activity of moronic acid (C1) (IC50 10.62 &plusmn; 0.89 and 20.08 &plusmn; 0.56 &micro;g/mL, respectively) and amentoflavone (C7) (IC50 5.57 &plusmn; 1.12 &micro;g/mL and 19.84 &plusmn; 1.33 &micro;g/mL, respectively). Isolated compounds of and biological assays for S. glauca, S. lucida, and S. laevigata are reported for the first time

    The 1.28 GHz MeerKAT Galactic Center Mosaic

    No full text
    International audienceThe inner ~200 pc region of the Galaxy contains a 4 million M⊙ supermassive black hole (SMBH), significant quantities of molecular gas, and star formation and cosmic-ray energy densities that are roughly two orders of magnitude higher than the corresponding levels in the Galactic disk. At a distance of only 8.2 kpc, the region presents astronomers with a unique opportunity to study a diverse range of energetic astrophysical phenomena, from stellar objects in extreme environments, to the SMBH and star-formation-driven feedback processes that are known to influence the evolution of galaxies as a whole. We present a new survey of the Galactic center conducted with the South African MeerKAT radio telescope. Radio imaging offers a view that is unaffected by the large quantities of dust that obscure the region at other wavelengths, and a scene of striking complexity is revealed. We produce total-intensity and spectral-index mosaics of the region from 20 pointings (144 hr on-target in total), covering 6.5 square degrees with an angular resolution of 4″ at a central frequency of 1.28 GHz. Many new features are revealed for the first time due to a combination of MeerKAT's high sensitivity, exceptional u, v-plane coverage, and geographical vantage point. We highlight some initial survey results, including new supernova remnant candidates, many new nonthermal filament complexes, and enhanced views of the Radio Arc bubble, Sagittarius A, and Sagittarius B regions. This project is a South African Radio Astronomy Observatory public legacy survey, and the image products are made available with this article

    The MeerKAT Galaxy Cluster Legacy Survey. I. Survey Overview and Highlights

    No full text
    International audienceMeerKAT's large number (64) of 13.5 m diameter antennas, spanning 8 km with a densely packed 1 km core, create a powerful instrument for wide-area surveys, with high sensitivity over a wide range of angular scales. The MeerKAT Galaxy Cluster Legacy Survey (MGCLS) is a programme of long-track MeerKAT L-band (900−1670 MHz) observations of 115 galaxy clusters, observed for ∼6−10 h each in full polarisation. The first legacy product data release (DR1), made available with this paper, includes the MeerKAT visibilities, basic image cubes at ∼8″ resolution, and enhanced spectral and polarisation image cubes at ∼8″ and 15″ resolutions. Typical sensitivities for the full-resolution MGCLS image products range from ∼3−5 μJy beam−1. The basic cubes are full-field and span 2° × 2°. The enhanced products consist of the inner 1.2° × 1.2° field of view, corrected for the primary beam. The survey is fully sensitive to structures up to ∼10' scales, and the wide bandwidth allows spectral and Faraday rotation mapping. Relatively narrow frequency channels (209 kHz) are also used to provide H I mapping in windows of 0 200. We find no dependence of the star-formation rate on distance from the cluster centre, and we observe a small excess of the radio-to-100 μm flux ratio towards the centre of Abell 209 that may reflect a ram pressure enhancement in the denser environment. We detect diffuse cluster radio emission in 62 of the surveyed systems and present a catalogue of the 99 diffuse cluster emission structures, of which 56 are new. These include mini-halos, halos, relics, and other diffuse structures for which no suitable characterisation currently exists. We highlight some of the radio galaxies that challenge current paradigms, such as trident-shaped structures, jets that remain well collimated far beyond their bending radius, and filamentary features linked to radio galaxies that likely illuminate magnetic flux tubes in the intracluster medium. We also present early results from the H I analysis of four clusters, which show a wide variety of H I mass distributions that reflect both sensitivity and intrinsic cluster effects, and the serendipitous discovery of a group in the foreground of Abell 3365. Data are available at https://doi.org/10.48479/7epd-w356
    corecore