460 research outputs found
Untargeted metabolomic analysis of Rat neuroblastoma cells as a model system to study the biochemical effects of the acute administration of methamphetamine
Methamphetamine is an illicit psychostimulant drug that is linked to a number of diseases of the nervous system. The downstream biochemical effects of its primary mechanisms are not well understood, and the objective of this study was to investigate whether untargeted metabolomic analysis of an in vitro model could generate data relevant to what is already known about this drug. Rat B50 neuroblastoma cells were treated with 1 mM methamphetamine for 48 h, and both intracellular and extracellular metabolites were profiled using gas chromatography–mass spectrometry. Principal component analysis of the data identified 35 metabolites that contributed most to the difference in metabolite profiles. Of these metabolites, the most notable changes were in amino acids, with significant increases observed in glutamate, aspartate and methionine, and decreases in phenylalanine and serine. The data demonstrated that glutamate release and, subsequently, excitotoxicity and oxidative stress were important in the response of the neuronal cell to methamphetamine. Following this, the cells appeared to engage amino acid-based mechanisms to reduce glutamate levels. The potential of untargeted metabolomic analysis has been highlighted, as it has generated biochemically relevant data and identified pathways significantly affected by methamphetamine. This combination of technologies has clear uses as a model for the study of neuronal toxicology
Narrow Linewidth 780 nm Distributed Feedback Lasers for Cold Atom Quantum Technology
Cold atom quantum technology systems have a wide range of potential applications which includes atomic clocks, rotational sensors, inertial sensors, quantum navigators, magnetometers and gravimeters. The UK Quantum Technology Hub in Sensors and Metrology has the aim of developing miniature cold atom systems using an approach similar to that pioneered by the chip scale atomic clock where microfabricated vacuum chambers have atomic transitions excited and probed by lasers. Whilst narrow linewidth Ti:Sa and external cavity diode lasers have been required for cooling and control, such lasers are too large, power hungry and expensive for future miniature cold atom systems.
Here we demonstrate 1 mm long 780.24 nm GaAs/AlGaAs distributed feedback (DFB) lasers aimed at 87Rb cold atom systems operating at 20 ËšC with over 50 mW of power and side-mode suppression ratios of 46 dB using sidewall gratings and no regrowth. Rb spectroscopy is used to demonstrate linewidths below the required 6.07 MHz natural linewidth of the 87Rb D2 optical transition used for cooling. Initial packaged fibre-coupled devices demonstrate lifetimes greater than 200 hours. We also investigate the use of integrated semiconductor amplifiers (SOAs) and longer devices to further reduce the linewidths well below 1 MHz. A range of options to control the populations of electrons in the hyperfine split energy levels spaced by 3.417 GHz are examined. Two integrated lasers, integrated electro-absorption modulators (EAMs) and the direct modulation of a single DFB laser approaches are investigated and we will discuss which is best suited to integrated cold atom systems
Tea-soybean intercropping improves tea quality and nutrition uptake by inducing changes of rhizosphere bacterial communities
The positive aspects of the tea plant/legume intercropping system draw attention to the Chinese tea industry for its benefit for soil fertility improvement with low fertilizer input. However, limited information exists as to the roles of intercropped legumes in the rhizosphere microbiome and tea quality. Hereby, soybean was selected as the intercropped plant to investigate its effect on bacterial communities, nutrient competition, tea plant development, and tea quality. Our data showed that intercropped soybean boosted the uptake of nitrogen in tea plants and enhanced the growth of young tea shoots. Nutrient competition for phosphorus and potassium in soil existed between soybeans and tea plants. Moreover, tea/soybean intercropping improved tea quality, manifested by a significantly increased content of non-ester type catechins (C, EGC, EC), total catechins and theanine, and decreased content of ester type catechins (EGCG). Significant differences in rhizobacterial composition were also observed under different systems. At the genus level, the relative abundance of beneficial bacteria, such as Bradyrhizobium, Saccharimonadales and Mycobacterium, was significantly increased with the intercropping system, while the relative abundance of denitrifying bacteria, Pseudogulbenkiania, was markedly decreased. Correlation analysis showed that Pseudogulbenkiania, SBR1031, and Burkholderiaceae clustered together showing a similar correlation with soil physicochemical and tea quality characteristics; however, other differential bacteria showed the opposite pattern. In conclusion, tea/soybean intercropping improves tea quality and nutrition uptake by increasing the relative abundance of beneficial rhizosphere bacteria and decreasing denitrifying bacteria. This study strengthens our understanding of how intercropping system regulate the soil bacterial community to maintain the health of soils in tea plantations and provides the basis for replacing chemical fertilizers and improving the ecosystem in tea plantations
Ozone efficiency on two Coleopteran insect pests and its effect on quality and germination of barley
Ozone (O3) is a potential fumigant to control pests in stored grain since it can safely and rapidly auto-decompose without leaving residues. In this study, the efficacy of O3 on all life stages of Rhyzopertha dominica (Fabricius) and Tribolium castaneum (Herbst) in barley and the physiological effects on barley and its quality were investigated. Complete control of all life stages of pests was obtained at 700 ppm for 1440 min of ozone exposure without negatively impacting the contents of soluble protein, moisture content, seed colour, hardness, and the weight of thousand barley seeds. The eggs and pupae of these two insects were the more tolerant stages than their larvae and adults. Prolonged exposure times (40 to 1440 min) and mortality assessment intervals (1, 2, and 7 days) increased O3 efficacy due to the reaction characteristics and delayed toxicity. Aging barley seeds appeared to be more sensitive to prolonged ozone duration than new seeds. A total of 20 and 40 min could promote germination rate, and longer O3 exposure (1440 min) was unfavourable for germination and seedling growth. Thus, it is imperative to select an optimal O3 exposure time to transfer ozone into quality contributors of final products and achieve the desired functional outcomes
Repetitive low intensity magnetic field stimulation in a neuronal cell line: a metabolomics study
Low intensity repetitive magnetic stimulation of neural tissue modulates neuronal excitability and has promising therapeutic potential in the treatment of neurological disorders. However, the underpinning cellular and biochemical mechanisms remain poorly understood. This study investigates the behavioural effects of low intensity repetitive magnetic stimulation (LI-rMS) at a cellular and biochemical level. We delivered LI-rMS (10 mT) at 1 Hz and 10 Hz to B50 rat neuroblastoma cells in vitro for 10 minutes and measured levels of selected metabolites immediately after stimulation. LI-rMS at both frequencies depleted selected tricarboxylic acid (TCA) cycle metabolites without affecting the main energy supplies. Furthermore, LI-rMS effects were frequency-specific with 1 Hz stimulation having stronger effects than 10 Hz. The observed depletion of metabolites suggested that higher spontaneous activity may have led to an increase in GABA release. Although the absence of organised neural circuits and other cellular contributors (e.g., excitatory neurons and glia) in the B50 cell line limits the degree to which our results can be extrapolated to the human brain, the changes we describe provide novel insights into how LI-rMS modulates neural tissue
Examination of the temporal variation of peptide content in decomposition fluid under controlled conditions using pigs as human substitutes
We report the preliminary observations of the peptide content of decomposition fluid produced under controlled laboratory conditions and in the absence of a soil matrix. Four domestic pig (Sus scrofa domesticus) cadavers were used to model human decomposition over a four-week trial period; physical characteristics were recorded and the peptide components of decomposition fluid was analysed using high performance liquid chromatography-time of flight mass spectrometry. Preliminary data analysis indicated that a range of peptides were consistently detected across the course of the trial period and 27 of these were common to all four cadavers; 22 originating from haemoglobin. The peptides associated with haemoglobin subunit alpha and beta displayed a breakdown pattern that remained consistent for all cadavers for the duration of the trial. Though identification of peptides during decomposition has potential for estimating the time since death, quantification of selected peptides is likely to be essential to identify time-dependent trends
Metabolomics approaches for the diagnosis and understanding of kidney diseases
Diseases of the kidney are difficult to diagnose and treat. This review summarises the definition, cause, epidemiology and treatment of some of these diseases including chronic kidney disease, diabetic nephropathy, acute kidney injury, kidney cancer, kidney transplantation and polycystic kidney diseases. Numerous studies have adopted a metabolomics approach to uncover new small molecule biomarkers of kidney diseases to improve specificity and sensitivity of diagnosis and to uncover biochemical mechanisms that may elucidate the cause and progression of these diseases. This work includes a description of mass spectrometry-based metabolomics approaches, including some of the currently available tools, and emphasises findings from metabolomics studies of kidney diseases. We have included a varied selection of studies (disease, model, sample number, analytical platform) and focused on metabolites which were commonly reported as discriminating features between kidney disease and a control. These metabolites are likely to be robust indicators of kidney disease processes, and therefore potential biomarkers, warranting further investigation
Training Students on the Pharmacist Patient Care Process using an Electronic Health Record and Simulations
Objective: To measure the impact of an electronic health record (EHR) and simulated physician encounters on student knowledge and skills related to the implementation phase of the Pharmacist Patient Care Process (PPCP). Secondary objectives were to measure students’ self-perceived abilities.
Methods: Students enrolled in a therapeutics course worked-up patient cases within an EHR. Students entered orders/ prescriptions into the computerised provider order entry (CPOE) platform. Faculty graded student work using a rubric. Students completed an instructor-developed pre-post attitudes survey and knowledge quiz.
Results: Two hundred students participated in this study and worked-up seven cases. Scores ranged from 67.7% to 88.2% on the case work-ups and 78.6% to 91.1% on the order/prescription-entry components. Individual scores on the quiz improved from 15.3/20 to 17.3/20 (p\u3c0.001). Aggregate ratings on the attitudes survey increased from 23.2 to 31.0 (p\u3c0.001).
Conclusion: Use of an EHR coupled with simulation was well-received and improved student understanding of the PPCP
Counter-propagating entangled photons from a waveguide with periodic nonlinearity
The conditions required for spontaneous parametric down-conversion in a
waveguide with periodic nonlinearity in the presence of an unguided pump field
are established. Control of the periodic nonlinearity and the physical
properties of the waveguide permits the quasi-phase matching equations that
describe counter-propagating guided signal and idler beams to be satisfied. We
compare the tuning curves and spectral properties of such counter-propagating
beams to those for co-propagating beams under typical experimental conditions.
We find that the counter-propagating beams exhibit narrow bandwidth permitting
the generation of quantum states that possess discrete-frequency entanglement.
Such states may be useful for experiments in quantum optics and technologies
that benefit from frequency entanglement.Comment: submitted to Phys. Rev.
Toxicological screening and DNA sequencing detects contamination and adulteration in regulated herbal medicines and supplements for diet, weight loss and cardiovascular health
Use of herbal medicines and supplements by consumers to prevent or treat disease, particularly chronic conditions continues to grow, leading to increased awareness of the minimal regulation standards in many countries. Fraudulent, adulterated and contaminated herbal and traditional medicines and dietary supplements are a risk to consumer health, with adverse effects and events including overdose, drug-herb interactions and hospitalisation. The scope of the risk has been difficult to determine, prompting calls for new approaches, such as the combination of DNA metabarcoding and mass spectrometry used in this study. Here we show that nearly 50% of products tested had contamination issues, in terms of DNA, chemical composition or both. Two samples were clear cases of pharmaceutical adulteration, including a combination of paracetamol and chlorpheniramine in one product and trace amounts of buclizine, a drug no longer in use in Australia, in another. Other issues include the undeclared presence of stimulants such as caffeine, synephrine or ephedrine. DNA data highlighted potential allergy concerns (nuts, wheat), presence of potential toxins (Neem oil) and animal ingredients (reindeer, frog, shrew), and possible substitution of bird cartilage in place of shark. Only 21% of the tested products were able to have at least one ingredient corroborated by DNA sequencing. This study demonstrates that, despite current monitoring approaches, contaminated and adulterated products are still reaching the consumer. We suggest that a better solution is stronger pre-market evaluation, using techniques such as that outlined in this study
- …