2 research outputs found

    Human foot outperforms the hand in mechanical pain discrimination

    Get PDF
    Tactile discrimination has been extensively studied, but mechanical pain discrimination remains poorly characterised. Here, we measured the capacity for mechanical pain discrimination using a two-alternative forced choice paradigm, with force-calibrated indentation stimuli (Semmes-Weinstein monofilaments) applied to the hand and foot dorsa of healthy human volunteers. In order to characterise the relationship between peripheral nociceptor activity and pain perception, we recorded single-unit activity from myelinated (A) and unmyelinated (C) mechanosensitive nociceptors in the skin using microneurography. At the perceptual level, we found that the foot was better at discriminating noxious forces than the hand, which stands in contrast to that for innocuous force discrimination, where the hand performed better than the foot. This observation of superior mechanical pain discrimination on the foot compared to the hand could not be explained by the responsiveness of individual nociceptors. We found no significant difference in the discrimination performance of either the myelinated or unmyelinated class of nociceptors between skin regions. This suggests the possibility that other factors such as skin biophysics, receptor density or central mechanisms may underlie these regional differences

    Hold me or stroke me? Individual differences in static and dynamic affective touch.

    Get PDF
    Low-threshold mechanosensory C-fibres, C-tactile afferents (CTs), respond optimally to sensations associated with a human caress. Additionally, CT-stimulation activates brain regions associated with processing affective states. This evidence has led to the social touch hypothesis, that CTs have a key role in encoding the affective properties of social touch. Thus, to date, the affective touch literature has focussed on gentle stroking touch. However, social touch interactions involve many touch types, including static, higher force touch such as hugging and holding. This study aimed to broaden our understanding of the social touch hypothesis by investigating relative preference for static vs dynamic touch and the influence of force on these preferences. Additionally, as recent literature has highlighted individual differences in CT-touch sensitivity, this study investigated the influence of affective touch experiences and attitudes, autistic traits, depressive symptomology and perceived stress on CT-touch sensitivity. Directly experienced, robotic touch responses were obtained through a lab-based study and vicarious touch responses through an online study where participants rated affective touch videos. Individual differences were determined by self-report questionnaire measures. In general, static touch was preferred over CT-non-optimal stroking touch, however, consistent with previous reports, CT-optimal stroking (velocity 1-10 cm/s) was rated most pleasant. However, static and CT-optimal vicarious touch were rated comparably for dorsal hand touch. For all velocities, 0.4N was preferred over 0.05N and 1.5N robotic touch. Participant dynamic touch quadratic terms were calculated for robotic and vicarious touch as a proxy CT-sensitivity measure. Attitudes to intimate touch significantly predict robotic and vicarious quadratic terms, as well as vicarious static dorsal hand touch ratings. Perceived stress negatively predicted robotic static touch ratings. This study has identified individual difference predictors of CT-touch sensitivity. Additionally, it has highlighted the context dependence of affective touch responses and the need to consider static, as well as dynamic affective touch
    corecore