10 research outputs found

    Posterior chest wall reconstruction with a free anterolateral thigh flap

    Get PDF
    link_to_subscribed_fulltex

    Endoplasmic reticulum chaperones stabilize ligand-receptive MR1 molecules for efficient presentation of metabolite antigens

    No full text
    The antigen-presenting molecule MR1 (MHC class I-related protein 1) presents metabolite antigens derived from microbial vitamin B2 synthesis to activate mucosal-associated invariant T (MAIT) cells. Key aspects of this evolutionarily conserved pathway remain uncharacterized, including where MR1 acquires ligands and what accessory proteins assist ligand binding. We answer these questions by using a fluorophore-labeled stable MR1 antigen analog, a conformation-specific MR1 mAb, proteomic analysis, and a genome-wide CRISPR/Cas9 library screen. We show that the endoplasmic reticulum (ER) contains a pool of two unliganded MR1 conformers stabilized via interactions with chaperones tapasin and tapasin-related protein. This pool is the primary source of MR1 molecules for the presentation of exogenous metabolite antigens to MAIT cells. Deletion of these chaperones reduces the ER-resident MR1 pool and hampers antigen presentation and MAIT cell activation. The MR1 antigen-presentation pathway thus co-opts ER chaperones to fulfill its unique ability to present exogenous metabolite antigens captured within the ER

    Absence of mucosal-associated invariant T cells in a person with a homozygous point mutation in MR1

    No full text
    The role unconventional T cells play in protective immunity in humans is unclear. Mucosal-associated invariant T (MAIT) cells are an unconventional T cell subset restricted to the antigen-presenting molecule MR1. Here, we report the discovery of a patient homozygous for a rare Arg31His (R9H in the mature protein) mutation in MR1 who has a history of difficult-to-treat viral and bacterial infections. MR1R9H was unable to present the potent microbially derived MAIT cell stimulatory ligand. The MR1R9H crystal structure revealed that the stimulatory ligand cannot bind due to the mutation lying within, and causing structural perturbation to, the ligand-binding domain of MR1. While MR1R9H could bind and be up-regulated by a MAIT cell inhibitory ligand, the patient lacked circulating MAIT cells. This shows the importance of the stimulatory ligand for MAIT cell selection in humans. The patient had an expanded γδ T cell population, indicating a compensatory interplay between these unconventional T cell subsets

    MAIT cells protect against pulmonary Legionella longbeachae infection

    No full text
    Mucosal associated invariant T (MAIT) cells recognise conserved microbial metabolites from riboflavin synthesis. Striking evolutionary conservation and pulmonary abundance implicate them in antibacterial host defence, yet their functions in protection against clinically important pathogens are unknown. Here we show that mouse Legionella longbeachae infection induces MR1-dependent MAIT cell activation and rapid pulmonary accumulation of MAIT cells associated with immune protection detectable in immunocompetent host animals. MAIT cell protection is more evident in mice lacking CD4+ cells, and adoptive transfer of MAIT cells rescues immunodeficient Rag2−/−γC−/− mice from lethal Legionella infection. Protection is dependent on MR1, IFN-γ and GM-CSF, but not IL-17A, TNF or perforin, and enhanced protection is detected earlier after infection of mice antigen-primed to boost MAIT cell numbers before infection. Our findings define a function for MAIT cells in protection against a major human pathogen and indicate a potential role for vaccination to enhance MAIT cell immunity

    Human MAIT cell activation in vitro

    No full text
    Item description: Chapter 7 in book 'MAIT Cells' (2020), ed H Kaipe and I Magalhaes. Methods in Molecular Biology, volume 2098. Mucosal-associated invariant T (MAIT) cells are an abundant innate-like T cell subset in humans, enriched in mucosal tissues and the liver. MAIT cells express a semi-invariant T cell receptor (TCR) and recognize microbial-derived riboflavin metabolites presented on the MHC Class I-like molecule MR1. In addition to activation via the TCR, MAIT cells can also be activated in response to cytokines such as IL-12 and IL-18, in contrast to conventional T cells. Here we describe TCR-dependent and -independent methods for MAIT cell activation. The TCR-dependent approaches include stimulation with microbead- or plate-bound anti-CD3/anti-CD28 antibodies, and with 5-OP-RU or paraformaldehyde (PFA)-fixed E. coli in the presence of antigen-presenting cells (APCs). The latter method includes a combination of TCR- and cytokine-mediated stimulation. The TCR-independent methods include direct stimulation with the recombinant cytokines IL-12 and IL-18, and indirect stimulation with TLR-4/TLR-8 agonists or influenza A virus in the presence of APCs. Finally, we outline a protocol to analyze activated MAIT cells using flow cytometry
    corecore