35 research outputs found

    Influence of Shear-Thinning Rheology on the Mixing Dynamics in Taylor-Couette Flow

    Get PDF
    Non‐Newtonian rheology can have a significant effect on mixing efficiency, which remains poorly understood. The effect of shear‐thinning rheology in a Taylor‐Couette reactor is studied using a combination of particle image velocimetry and flow visualization. Shear‐thinning is found to alter the critical Reynolds numbers for the formation of Taylor vortices and the higher‐order wavy instability, and is associated with an increase in the axial wavelength. Strong shear‐thinning and weak viscoelasticity can also lead to sudden transitions in wavelength as the Reynolds number is varied. Finally, it is shown that shear‐thinning causes an increase in the mixing time within vortices, due to a reduction in their circulation, but enhances the axial dispersion of fluid in the reactor

    Identifying characteristic features of the retinal and choroidal vasculature in choroideremia using optical coherence tomography angiography

    Get PDF
    PURPOSE: Using optical coherence tomography angiography (OCTA) to investigate the area with flow in the superficial retinal vessel network (SVRN) and choriocapillaris (CC) layer among male subjects with choroideremia (CHM), female carriers, and normal controls to identify vascular changes. PATIENTS AND METHODS: Images of SRVN and CC layer were acquired in 9 affected males, 5 female carriers, and 14 age- and gender-matched controls using the Angiovue software of the RTVue XR Avanti. RESULTS: The mean age was 33 years for affected male CHM patients (median 30 years), 46 years for female carriers (median 53 years), and 39 years for controls (median 38.5). Mean SRVN area±SD in subjects with CHM was 12.93±2.06 mm², in carrier subjects 15.36±0.60 mm², and in controls 15.30±1.35 mm² (P<0.01). The mean CC area±SD with flow was 6.97±5.26 mm² in CHM subjects, 21.65±0.17 mm² in carriers and 21.36±0.76 mm² in controls (P<0.01). SRVN and CC area with flow showed a negative correlation in CHM subjects with the age (r=−0.86; P<0.003 and r=−0.77; P<0.01, respectively). CC area with flow had a positive correlation with SRVN (r=0.83, P<0.001). Overall, visual acuity had a negative correlation with SRVN and CC area with flow (r=−0.67, P<0.001 and r=−0.57, P<0.002, respectively). CONCLUSIONS: This is the first study to highlight changes in the SRVN in CHM subjects. OCTA detected a reduced area with flow in both retinal and choroidal circulations, and may be a useful tool for monitoring natural history and disease progression in forthcoming clinical trials

    Virus genomes and virus-host interactions in aquaculture animals

    Full text link

    Ranavirus Host Immunity and Immune Evasion

    Full text link

    Dexamethasone intravitreal implant in previously treated patients with diabetic macular edema : Subgroup analysis of the MEAD study

    Get PDF
    Background: Dexamethasone intravitreal implant 0.7 mg (DEX 0.7) was approved for treatment of diabetic macular edema (DME) after demonstration of its efficacy and safety in the MEAD registration trials. We performed subgroup analysis of MEAD study results to evaluate the efficacy and safety of DEX 0.7 treatment in patients with previously treated DME. Methods: Three-year, randomized, sham-controlled phase 3 study in patients with DME, best-corrected visual acuity (BCVA) of 34.68 Early Treatment Diabetic Retinopathy Study letters (20/200.20/50 Snellen equivalent), and central retinal thickness (CRT) 65300 \u3bcm measured by time-domain optical coherence tomography. Patients were randomized to 1 of 2 doses of DEX (0.7 mg or 0.35 mg), or to sham procedure, with retreatment no more than every 6 months. The primary endpoint was 6515-letter gain in BCVA at study end. Average change in BCVA and CRT from baseline during the study (area-under-the-curve approach) and adverse events were also evaluated. The present subgroup analysis evaluated outcomes in patients randomized to DEX 0.7 (marketed dose) or sham based on prior treatment for DME at study entry. Results: Baseline characteristics of previously treated DEX 0.7 (n = 247) and sham (n=261) patients were similar. In the previously treated subgroup, mean number of treatments over 3 years was 4.1 for DEX 0.7 and 3.2 for sham, 21.5 % of DEX 0.7 patients versus 11.1 % of sham had 6515-letter BCVA gain from baseline at study end (P = 0.002), mean average BCVA change from baseline was +3.2 letters with DEX 0.7 versus +1.5 letters with sham (P = 0.024), and mean average CRT change from baseline was -126.1 \u3bcm with DEX 0.7 versus -39.0 \u3bcm with sham(P < 0.001). Cataract-related adverse events were reported in 70.3 % of baseline phakic patients in the previously treated DEX 0.7 subgroup; vision gains were restored following cataract surgery. Conclusions: DEX 0.7 significantly improved visual and anatomic outcomes in patients with DME previously treated with laser, intravitreal anti-vascular endothelial growth factor, intravitreal triamcinolone acetonide, or a combination of these therapies. The safety profile of DEX 0.7 in previously treated patients was similar to its safety profile in the total study population

    Role of antioxidant enzymes and small molecular weight antioxidants in the pathogenesis of age-related macular degeneration (AMD)

    Get PDF

    Doping controlled pyro-phototronic effect in self-powered zinc oxide photodetector for enhancement of photoresponse

    No full text
    The pyro-phototronic effect can be used in pyroelectric semiconductor materials to significantly contribute in enhancing the self-powered photoresponse of photodetectors (PDs) via modulation of the photogenerated charge density. The pyro-phototronic effect in zinc oxide (ZnO) nanorods (NRs) was exploited thoroughly by doping with halogen elements, such as fluorine, chlorine (Cl), bromine and iodine. Cl-doped ZnO NRs (Cl:ZnO NRs) induces a large number of free charge carriers to enhance the self-powered photoresponse behavior (nearly 333% enhancement in response current) due to the pyro-phototronic effect as compared to pristine ZnO NRs. Moreover, 405% enhancement in pyrocurrent was measured for the Cl:ZnO NRs PD under a ultraviolet illumination intensity of 3 mW cm-2, as compared to 0.3 mW cm-2, in the absence of external bias voltage. Furthermore, other photoresponse parameters such as responsivity, external quantum efficiency and specific detectivity are measured to be higher due to the pyro-phototronic effect. Therefore, this study reveals the direct use of the pyro-phototronic effect to enhance the self-powered photoresponse
    corecore