17 research outputs found

    Antimicrobial resistance pattern, clustering mechanisms and correlation matrix of drug-resistant Escherichia coli in black Bengal goats in West Bengal, India

    Get PDF
    A cross-sectional study covering four agro-climatic zones of West Bengal, India, was carried out to understand the risk-factors, antimicrobial resistance mechanism and clustering of the resistance characteristics of Escherichia coli isolated from healthy (170) and diarrhoeic (74) goats reared under intensive (52) and semi-intensive (192) farming practices. Of the 488 E. coli isolates, the majority, including the extended spectrum (n: 64, 13.11%) and AmpC β-lactamase (ACBL) (n: 86, 17.62%) producers, were resistant to tetracycline (25.2%), followed by enrofloxacin (24.5%), cefotaxime (21.5%) and amikacin (20.5%). Statistical modelling revealed that the isolates from diarrhoeic animals (p < 0.001) are likely to be more ACBL-positive than those from the healthy counterparts. Similarly, cefotaxime (p < 0.05) and enrofloxacin-resistance (p < 0.01) were significantly higher in diarrhoeic goats and in goats reared intensively. The isolates (n = 35) resistant to multiple drugs revealed the presence of β-lactamase [blaCTXM-1-(21), blaSHV-(7), blaTEM-(3), blaCMY-6-(1), blaCITM-(3)]; quinolone [qnrB-(10), qnrS-(7), aac(6’)-Ib-cr-(3)]; tetracycline [tetA-(19), tetB-(4)] and sulphonamide resistance determinants [sul1-(4)]; multiple plasmids, especially those belonging to the IncF and IncI1 replicon types; and active acrAB efflux pumps. Further, two isolates harbored the carbapenem resistance (blaNDM-5) gene and eight were strong biofilm producers. This first ever study conducted to unravel the status of AMR in goat farming reveals that not only the intensive farming practices but also certain clinical ailments such as diarrhoea can increase the shedding of the drug-resistant isolate. The emergence of multi-drug resistant (MDR) E. coli in goats, particularly those that are carbapenem resistant, is a cause for concern that indicates the spread of such pathogens even in the livestock sub-sector generally considered as naive

    Experimental assessment of arsenic toxicity in garole sheep in India

    Get PDF
    Arsenic, a dangerous bio-accumulative poison, is a grave threat affecting a large number of people as well as animals throughout the World, particularly in Bangladesh and West Bengal, India. It is also a matter of concern as continuously entering into food chain through biotic and abiotic products. The present study was conducted to evaluate the experimental effect of arsenic toxicosis on Garole sheep of West Bengal. One group was subjected to oral arsenic exposure @ 6.6 mg Kg−1 over 133 days when rests considered as negative control. Periodical arsenic estimation in wool, urine and feces along with hemato-biochemical alteration were checked thoroughly. It was evident from the study that long term arsenic exposure exerted a significant (p < 0.01) alteration compared to normal animal which were further supported by clinical abnormalities. Exposed animals showed histological changes throughout major internal organs like coagulative necrosis of liver, tubular nephritis of kidney and acanthosis of skin etc. The bio-accumulative and excretion pattern of arsenic inside body were also well understood by the arsenic estimation study of wool, urine and feces which may be helpful for discussion regarding arsenic entry into food chain via animals

    Not Available

    No full text
    Not AvailableThe aim of present study was to assess the osmotic fragility and oxidative stress in horse erythrocytes infected with Theileria equi in in vitro culture using microaerophilous stationary phase (MASP) technique. Malondialdehyde (MDA) is biomarker of oxidative damage which is indirectly indicative of lipid peroxidation of erythrocytic membrane. The continuous MASP culture of T. equi was established for evaluating the oxidative damage in in vitro condition. Theileria equi–infected erythrocytes (iRBC) were collected from in vitro cultures at different parasitemia (1%–10%). Theileria equi–uninfected erythrocytes (uRBC) were also collected for control studies. Malondialdehyde concentrations in iRBC and uRBC were evaluated. A nonsignificant (P < .001) difference in MDA concentration between uRBC (339.94 0.80 mM/mL) and 1%–10% of iRBC (357.48 0.82 mM/mL) was observed. After 1% of T. equi parasitemia, a sequential significant (P < .001) increase in MDA levels was observed coinciding with increasing T. equi parasitemia. Similarly, osmotic fragility of iRBC also increases with rise in T. equi parasitemia. Percent hemolysis of iRBC increased from 13.89% to 26.40% at 1% to 10% parasitemia in 0.85% of sodium chloride solution. The results of this study demonstrated that horse erythrocytes when infected by T. equi in in vitro condition undergo oxidative damage and osmotic fragility, which increased with increasing parasitic load and may be a contributing factor in pathogenesis process of this disease condition.Not Availabl

    Not Available

    No full text
    Not AvailableThe aim of present study was to assess the osmotic fragility and oxidative stress in horse erythrocytes infected with Theileria equi in in vitro culture using microaerophilous stationary phase (MASP) technique. Malondialdehyde (MDA) is biomarker of oxidative damage which is indirectly indicative of lipid peroxidation of erythrocytic membrane. The continuous MASP culture of T. equi was established for evaluating the oxidative damage in in vitro condition. Theileria equi–infected erythrocytes (iRBC) were collected from in vitro cultures at different parasitemia (1%–10%). Theileria equi–uninfected erythrocytes (uRBC) were also collected for control studies. Malondialdehyde concentrations in iRBC and uRBC were evaluated. A nonsignificant (P < .001) difference in MDA concentration between uRBC (339.94 0.80 mM/mL) and 1%–10% of iRBC (357.48 0.82 mM/mL) was observed. After 1% of T. equi parasitemia, a sequential significant (P < .001) increase in MDA levels was observed coinciding with increasing T. equi parasitemia. Similarly, osmotic fragility of iRBC also increases with rise in T. equi parasitemia. Percent hemolysis of iRBC increased from 13.89% to 26.40% at 1% to 10% parasitemia in 0.85% of sodium chloride solution. The results of this study demonstrated that horse erythrocytes when infected by T. equi in in vitro condition undergo oxidative damage and osmotic fragility, which increased with increasing parasitic load and may be a contributing factor in pathogenesis process of this disease condition.Not Availabl

    Not Available

    No full text
    Not AvailableTheileria equi and Babesia caballi are tick-borne apicomplexan haemoprotozoan parasites of equines and are responsible for considerable economic losses to stakeholders. Chemotherapeutic drugs that are available not only require multiple dosages but also prompt multiple organ toxicity in treated host though incapable of clearing parasitaemia completely. In this study, we have screened the in vitro inhibitory efficacy of four different drug molecules (o-choline, DABCO®, lumefantrine and eugenol) against T. equi and B. caballi, targeting different parasite metabolism pathways. Imidocarb dipropionate and diminazene aceturate were used as reference control drugs. The 50% in vitro growth inhibitory concentration (IC50) of lumefantrine, o-choline, DABCO® and eugenol for T. equi were: 30.90 μM; 84.38 μM; 443 μM; 120 μM and for B. caballi growth inhibition were: 5.58 μM; 135.29 μM; 150 μM; 197.05 μM, respectively. Imidocarb dipropionate inhibited the in vitro growth of T. equi at IC50 of 257.5 nM, while diminazene aceturate inhibited the in vitro growth of B. caballi at IC50 of 22 nM. DABCO® and eugenol were not so effective in inhibiting the in vitro growth of T. equi and B. caballi, while lumefantrine and o-choline significantly (p≤0.05) inhibited the in vitro growth of these piroplasms targeting haem digestion and parasite membrane phospholipid synthesis.Not Availabl

    Synthesis, characterization, structural and photophysical properties of heteroleptic ruthenium complexes containing 2-(1H-benzo[d]imidazol-2-yl)quinoline ligand towards electrocatalytic CO2 reduction

    No full text
    Two novel mononuclear heteroleptic Ru(II) photosensitizers with 2-(1H-benzo[d]imidazol-2-yl)quinoline derivatives were designed and successfully synthesized. The facile synthesis and their photophysical properties are investigated. Both the Ru(II) complexes i.e., [RuII(bpy)2(L1)](ClO4) : [1](ClO4) and [RuII(bpy)2(L2)](ClO4)2 : [2](ClO4)2 {L1 = 2-(1H-benzo[d]imidazol-2-yl)quinoline and L2 = 2-(1-methyl-1H-benzo[d]imidazol-2-yl)quinoline} have been meticulously characterized by different spectroscopic and analytical techniques such as FT–IR, 1H NMR, ESI mass spectra, UV–vis and fluorescence spectroscopy, etc. Molecular structures of [1](ClO4) and [2](ClO4)2 have been determined by a single-crystal X-ray structure diffraction study. Redox and spectral properties of the synthesized Ru(II) complexes were examined along with their corresponding ligands and compared with the classic homoleptic [RuII(bpy)3](PF6)2. The effects on substituents in the ligand backbone were scrutinised. The emission behaviour of both [1](ClO4) and [2](ClO4)2 revealed relatively long-lived emissive 3MLCT and bathochromic shift (~ 715 nm) while compared with [RuII(bpy)3](PF6)2 (~ 605 nm). Fairly weak quantum yields for [1](ClO4) and [2](ClO4)2 : ∼ 0.00299 and ∼ 0.00295 with half-lives 181.57 ns and 198.89 ns, respectively, suggested different non-radiative emission pathways. Additionally, for [1](ClO4) and [2](ClO4)2, electrochemical reduction of carbon dioxide (CO2) in dry acetonitrile solvent was performed and showed great promises for future designing of electrochemical reduction of CO2. Graphical abstract: Two mononuclear heteroleptic Ru(II) photosensitizers [1](ClO4) and [2](ClO4)2 containing 2-(1H-benzo[d]imidazol-2-yl)quinoline ligand were synthesized and investigated via FT–IR, 1H NMR, ESI mass spectra, UV–vis, time-resolved photoluminescence spectroscopy, X-ray structure, etc. Both [1](ClO4) and [2](ClO4)2 showed great promises for electrochemical reduction of carbon dioxide in dry acetonitrile.[Figure not available: see fulltext.] © 2022, Indian Academy of Sciences

    Chronic Arsenicosis of Cattle in West Bengal and It's Possible Mitigation by Sodium Thiosulfate

    No full text
    Thirty milch cows having arsenic concentration in hair varying from 3 to 4 mg/kg from Dakhin Panchpota village of Nadia district, West Bengal, were divided into three equal groups where high amount of arsenic is reported to be present in soil and ground water. Groups II and III received, respectively, sodium thiosulfate 20 and 40 g to each animal for 30 days as a pilot study, whereas group I served as untreated control. Arsenic content of milk, feces, hair, and urine was estimated before and after administration of sodium thiosulfate orally at two dose level once daily for 1 month. Paddy straw, mustard oil cake, and water fed by animals were also assayed. Sodium thiosulfate significantly decreased arsenic load in milk, urine, and hair after 1 month. In milk, arsenic concentration was decreased significantly which may be beneficial for animal and human beings

    Polymorphisms in ADH1B and ALDH2 genes associated with the increased risk of gastric cancer in West Bengal, India

    No full text
    Abstract Background Gastric cancer (GC) is one of the most frequently diagnosed digestive tract cancers and carries a high risk of mortality. Acetaldehyde (AA), a carcinogenic intermediate of ethanol metabolism contributes to the risk of GC. The accumulation of AA largely depends on the activity of the major metabolic enzymes, alcohol dehydrogenase and aldehyde dehydrogenase encoded by the ADH (ADH1 gene cluster: ADH1A, ADH1B and ADH1C) and ALDH2 genes, respectively. This study aimed to evaluate the association between genetic variants in these genes and GC risk in West Bengal, India. Methods We enrolled 105 GC patients (cases), and their corresponding sex, age and ethnicity was matched to 108 normal individuals (controls). Genotyping for ADH1A (rs1230025), ADH1B (rs3811802, rs1229982, rs1229984, rs6413413, rs4147536, rs2066702 and rs17033), ADH1C (rs698) and ALDH2 (rs886205, rs968529, rs16941667 and rs671) was performed using DNA sequencing and RFLP. Results Genotype and allele frequency analysis of these SNPs revealed that G allele of rs17033 is a risk allele (A vs G: OR = 3.67, 95% CI = 1.54–8.75, p = 0.002) for GC. Significant association was also observed between rs671 and incidence of GC (p = 0.003). Moreover, smokers having the Lys allele of rs671 had a 7-fold increased risk of acquiring the disease (OR = 7.58, 95% CI = 1.34–42.78, p = 0.009). Conclusion In conclusion, rs17033 of ADH1B and rs671 of ALDH2 SNPs were associated with GC risk and smoking habit may further modify the effect of rs671. Conversely, rs4147536 of ADH1B might have a protective role in our study population. Additional studies with a larger patient population are needed to confirm our results
    corecore