3 research outputs found

    Exploring the Link between Hydrodynamic Size and Immunoglobulins of Circulating Immune Complexes in Rheumatoid Arthritis Patients

    Get PDF
    The function of immune complexes in rheumatoid arthritis (RA) is related to their composition and size. Using dynamic light scattering (DLS), we investigated the link between the RA circulating immune complex (CIC) particlesā€™ size and the CIC immunoglobulin level. In this study, 30 RA patients and 30 healthy individuals were included. IgA, IgG, and IgM were found in all analyzed CICs, but more IgA and IgG were found in RA than in control CICs. In both control and RA CICs, DLS detected 50 particles that differed in size and clustered around two size groups: with a 7.5ā€“164 nm radius and with a 342ā€“1718 nm radius. An increased level of IgA in RA CICs, compared to control ones, was associated with more than 50% of CIC particles. In RA, compared to the control, a higher number of CICs with 28.2 nm, 531 nm, 712 nm, and 1718 nm particles and a lower number of CICs with 78.8 nm particles were detected. This particle distribution pattern did not reflect the changes in the CIC immunoglobulin level. Thus, RA elevated CIC IgA was linked with all these particles (except the 1718 nm particle), the IgM increase was linked with 43.8 nm and 712 nm particles, and the IgG increase was linked with the 712 nm particle only. This study provides the very first data on the association between CIC particlesā€™ size, CIC immunoglobulin level, and RA. It opens the possibility that the size of CICs determined by DLS can be used as a criterion in RA diagnosis or monitoring after a large-scale study confirmation

    Morphology, Aggregation Properties, Cytocompatibility, and Anti-Inflammatory Potential of Citrate-Stabilized AuNPs Prepared by Modular Ultrasonic Spray Pyrolysis

    Get PDF
    Ultrasonic Spray Pyrolysis (USP) possesses a great potential for production of higher quantities of gold nanoparticles (AuNPs), thus overcoming the problem of batch-to-batch variations in their properties. Recently, we demonstrated that USP with an additional evaporation chamber (modular USP) led to a better size control of AuNPs. However, their morphology, stability, toxicity, and immunomodulatory properties have not been investigated completely. Here, two types of spherical AuNPs were produced by using different USP parameters, followed by their stabilization in Na-citrate solution. No significant changes in their size, agglomeration, and z-potential occurred 3 months after their initial production in citrate solution. However, the conditioning of AuNPs in serum-containing cell culture media for 24ā€‰h induced an increase in the AuNPsā€™ hydrodynamic size and a red shift in their Surface Plasmon Resonance, pointing to their instability in biological media. Cytocompatibility tests showed that the produced AuNPs were internalized by L929 cells and primary human monocytes and were not cytotoxic at the concentrations lower than 200ā€‰Ī¼g/mL, but they exhibited antiproliferative and anti-inflammatory effects, respectively. AuNPs reduced the percentage of CD14+CD16+ but not CD14lowCD16+ monocytes in vitro and reduced the expression of CD86, HLA-DR, TNF-Ī±, and IL-12/IL-23 by these cells. These results indicate that the anti-inflammatory effects of citrate-capped AuNPs produced by modular USP could be beneficial for their application in the treatment of inflammatory conditions

    Dynamic light scattering analysis of immune complexes in sera of rheumatoid arthritis patients

    No full text
    The size of circulating immune complexes (CICs) in rheumatoid arthritis (RA) could be an emerging criterion in disease diagnosis. This study analyzed size and electrokinetic potential of CICs from RA patients, healthy young adults, and RA patients age-matched controls aiming to establish their unique CIC features. Pooled CIC of 30 RA patients, 30 young adults, and 30 RA group's age-matched controls (middle-aged and oldŠµr healthy adults), and in vitro IgG aggregates from pooled sera of 300 healthy volunteers were tested using dynamic light scattering (DLS). Size distribution of CIC in healthy young adults exhibited high polydispersity. RA CIC patients and their age-matched control showed distinctly narrower size distributions compared with young adults. In these groups, particles clustered around two well-defined peaks. Particles of peak 1 were 36.1 Ā± 6.8 nm in RA age-matched control, and 30.8 Ā± 4.2 nm in RA patients. Particles of peak 2 of the RA age-matched control's CIC was 251.7 Ā± 41.2 nm, while RA CIC contained larger particles (359.9 Ā± 50.5 nm). The lower zeta potential of RA CIC, compared to control, indicated a disease-related decrease in colloidal stability. DLS identified RA-specific, but also age-specific distribution of CIC size and opened possibility of becoming a method for CIC size analysis in IC-mediated diseases
    corecore