55 research outputs found

    Fabrication and characterization of superconducting circuit QED devices for quantum computation

    Full text link
    We present fabrication and characterization procedures of devices for circuit quantum electrodynamics (cQED). We have made 3 GHz cavities with quality factors in the range 10^4--10^6, which allow access to the strong coupling regime of cQED. The cavities are transmission line resonators made by photolithography. They are coupled to the input and output ports via gap capacitors. An Al-based Cooper pair box is made by ebeam lithography and Dolan bridge double-angle evaporation in superconducting resonators with high quality factor. An important issue is to characterize the quality factor of the resonators. We present an RF-characterization of superconducting resonators as a function of temperature and magnetic field. We have realized different versions of the system with different box-cavity couplings by using different dielectrics and by changing the box geometry. Moreover, the cQED approach can be used as a diagnostic tool of qubit internal losses.Comment: 4 pages, 6 figures, Applied Superconductivity Conference 200

    Construction by Linking: The Linkbase Method

    Get PDF
    The success of many innovative Web applications is not based on the content they produce – but on how they combine and link existing content. Older Web Engineering methods lack flexibility in a sense that they rely strongly on a-priori knowledge of existing content structures and do not take into account initially unknown content sources. We propose the adoption of principles that are also found in Component-based Software Engineering, to assemble highly extensible solutions from reusable artifacts. The main contribution of our work is a support system, consisting of a central service that manages n:m relationships between arbitrary Web resources, and of Web application components that realize navigation, presentation, and interaction for the linked content. Categories and Subject Descriptor

    Optimizing inhomogeneous spin ensembles for quantum memory

    Full text link
    We propose a general method to maximize the fidelity of writing, storage and reading of quantum information (QI) in a spectrally inhomogeneous spin ensemble used as quantum memory. The method is based on preselecting the optimal spectral portion of the ensemble by a judiciously designed pulse. It allows drastic improvement of quantum memory realized by spin ensembles that store QI from a resonator or an optical beam.Comment: Corrected m
    • …
    corecore