22 research outputs found
Evaluating the interaction of 308-nm xenon chloride excimer laser with human dentin and enamel hard tissues
Background: The pulsed output of the 308 nm XeCl laser and its photoablation action rather than photothermal action offers the ability to remove dental hard tissues with minimal generation of heat in the tissue. Materials and Methods: A total of 20 human molar teeth (ten teeth used as enamel samples and ten teeth used as dentin samples after removing the enamel tissue from their crowns) were irradiated by the laser. The crown of each sample was regarded as a cube which its lateral sides were exposed in 2Hz frequency without water cooling. Also, 18 holes for all enamel samples and 18 holes for all dentin samples were obtained. Three different amounts of energy were selected as a variable factor with 6 different numbers of pulses in each energy. The images of these holes were prepared by optic and computer combining, and the amounts of the ablation depth and effective ablation area were calculated using the MATLAB software. Results: The amounts of ablation depth were increased with increasing the number of pulses for both enamel and dentin tissues. The amounts of ablation depth were also increased with increasing the amounts of energy for both enamel and dentin tissues. The greater amounts of ablation depth and effective ablation area were observed in the dentin tissue rather than the enamel tissue. The borders of created holes were reported sharp and clear. Conclusion: The application of the XeCl laser for hard tissue removal and cavity preparation can be possible after some certain modifications
Improving the distribution of rural health houses using elicitation and GIS in Khuzestan province (The southwest of Iran)
Background: Rural health houses constitute a major provider of some primary health services in the villages of Iran. Given the challenges of providing health services in rural areas, health houses should be established based on the criteria of health network systems (HNSs). The value of these criteria and their precedence over others have not yet been thoroughly investigated. The present study was conducted to propose a model for improving the distribution of rural health houses in HNSs. Methods: The present applied study was conducted in Khuzestan province in the southwest of Iran in 2014-2016. First, the descriptive and spatial data required were collected and entered into ArcGIS after modifications, and the Geodatabase was then created. Based on the criteria of the HNS and according to experts� opinions, the main criteria and the sub-criteria for an optimal site selection were determined. To determine the criteria�s coefficient of importance (ie, their weight), the main criteria and the sub-criteria were compared in pairs according to experts� opinions. The results of the pairwise comparisons were entered into Expert Choice and the weight of the main criteria and the sub-criteria were determined using the analytic hierarchy process (AHP). The application layers were then formed in geographic information system (GIS). A model was ultimately proposed in the GIS for the optimal distribution of rural health houses by overlaying the weighting layers and the other layers related to villages and rural health houses. Results: Based on the experts� opinions, six criteria were determined as the main criteria for an optimal site selection for rural health houses, including welfare infrastructures, population, dispersion, accessibility, corresponding routes, distance to the rural health center and the absence of natural barriers to accessibility. Of the main criteria proposed, the highest weight was given to �population� (0.506). The priorities suggested in the proposed model for establishing rural health houses are presented within five zoning levels �from excellent to very poor. Conclusion: The results of the study showed that the proposed model can help provide a better picture of the distribution of rural health houses. The GIS is recommended to be used as a means of making the HNS more efficient. © 2018 The Author(s); Published by Kerman University of Medical Sciences
Improving the distribution of rural health houses using elicitation and GIS in Khuzestan province (The southwest of Iran)
Background: Rural health houses constitute a major provider of some primary health services in the villages of Iran. Given the challenges of providing health services in rural areas, health houses should be established based on the criteria of health network systems (HNSs). The value of these criteria and their precedence over others have not yet been thoroughly investigated. The present study was conducted to propose a model for improving the distribution of rural health houses in HNSs. Methods: The present applied study was conducted in Khuzestan province in the southwest of Iran in 2014-2016. First, the descriptive and spatial data required were collected and entered into ArcGIS after modifications, and the Geodatabase was then created. Based on the criteria of the HNS and according to experts� opinions, the main criteria and the sub-criteria for an optimal site selection were determined. To determine the criteria�s coefficient of importance (ie, their weight), the main criteria and the sub-criteria were compared in pairs according to experts� opinions. The results of the pairwise comparisons were entered into Expert Choice and the weight of the main criteria and the sub-criteria were determined using the analytic hierarchy process (AHP). The application layers were then formed in geographic information system (GIS). A model was ultimately proposed in the GIS for the optimal distribution of rural health houses by overlaying the weighting layers and the other layers related to villages and rural health houses. Results: Based on the experts� opinions, six criteria were determined as the main criteria for an optimal site selection for rural health houses, including welfare infrastructures, population, dispersion, accessibility, corresponding routes, distance to the rural health center and the absence of natural barriers to accessibility. Of the main criteria proposed, the highest weight was given to �population� (0.506). The priorities suggested in the proposed model for establishing rural health houses are presented within five zoning levels �from excellent to very poor. Conclusion: The results of the study showed that the proposed model can help provide a better picture of the distribution of rural health houses. The GIS is recommended to be used as a means of making the HNS more efficient. © 2018 The Author(s); Published by Kerman University of Medical Sciences
Investigation on polycarbonate nanomembrane production based on alpha particles irradiation
Track-etched membranes were prepared in the Dosimetry Laboratory of Agricultural, Medical and Industrial Research School by exposing polycarbonate (PC) films with a thickness of about 20 μm to alpha particles emitted from 241Am followed by chemical etching in sodium hydroxide (NaOH) at different temperatures and solution concentrations. The PC films were prepared using the method of chemical solving, forming and drying in a vacuum oven. The etching rate of PC was related to the concentration of etching solution, etching temperature and time. Therefore, a series of track-etched membranes were produced using different etching parameters. The relation between the etching rate and the etching parameters were established from experimental data and can be used to control the average pore sizes of the PC track-etched membrane. The pore sizes and their structures were studied by an optical microscope (OM) and a scanning electron microscope (SEM) and the obtained results indicated that the pores across the PC films are cylindrically shaped
The effect of external wedge on the photoneutron dose equivalent at a high energy medical linac
Medical linacs used in radiotherapy produce bremsstrahlung spectra. In the energy range from 8 to 25 MV medical linacs produce, besides the clinically useful electron and photon beams, secondary neutrons. The aim of this study was to investigate the effect of an external wedge filter on the photoneutron dose equivalent produced by a medical linac at patient plane. Polycarbonate (PC) films were used for the determination of photoneutron dose equivalent produced by a Varian 2100 C/D linac working at 18 MV photon mode. Neutron dose equivalent was measured at distances 0, 10, 20 and 50 cm from the center of the X-ray beam for open field and after inserting a wedge filter. It was noted that by inserting the external wedge in the path of the X-ray beam, the photoneutron dose equivalent was increased compared to open field. It can be concluded that an external wedge, made from heavy materials may act like the other components of linac head, producing undesired photoneutrons and thus increasing patient dose
Simplified Electrochemical Multi-Particle Model for LiFePO4 Cathodes in Lithium-Ion Batteries
A simplified physics-based model is developed to predict the performance of an LiFePO4 cathode at various operating and design conditions. Newman\u27s full-order porous-electrode model is simplified using polynomial approximations for electrolyte variables at the electrode-level while a multi-particle model featuring variable solid-state diffusivity is employed at the particle level. The computational time of this reduced-order model is decreased by almost one order of magnitude compared to the full-order model without sacrificing the accuracy of the results. The model is general and can be used to expedite the simulation of any composite electrode with active-material particles of non-uniform properties (e.g., size, contact resistance, material chemistry etc.). In a broader perspective, this model is of practical value for electric vehicle power train simulations and battery management systems