78 research outputs found
Bioreactor-Based Bone Tissue Engineering
The aim of this chapter is to describe the main issues of bone tissue engineering. Bone transplants are widely used in orthopedic, plastic and reconstructive surgery. Current technologies like autologous and allogenic transplantation have several disadvantages making them relatively unsatisfactory, like donor site morbidity, chronic pain, and immunogenicity and risk hazard from infectious disease. Therefore, regenerative orthopedics seeks to establish a successful protocol for the healing of severe bone damage using engineered bone grafts. The optimization of protocols for bone graft production using autologous mesenchymal stem cells loaded on appropriate scaffolds, exposed to osteogenic inducers and mechanical force in bioreactor, should be able to solve the current limitations in managing bone injuries. We discuss mesenchymal stem cells as the most suitable cell type for bone tissue engineering. They can be isolated from a variety of mesenchymal tissues and can differentiate into osteoblasts when given appropriate mechanical support and osteoinductive signal. Mechanical support can be provided by different cell scaffolds based on natural or synthetic biomaterials, as well as combined composite materials. Three-dimensional support is enabled by bioreactor systems providing several advantages as mechanical loading, homogeneous distribution of cells and adequate nutrients/waste exchange. We also discuss the variety of osteoinductive signals that can be applied in bone tissue engineering. The near future of bone healing and regeneration is closely related to advances in tissue engineering. The optimization of protocols of bone graft production using autologous mesenchymal stem cells loaded on appropriate scaffolds, exposed to osteogenic inducers and mechanical force in bioreactor, should be able to solve the current limitations in managing bone injuries
Financijska inkluzija i regionalni razvitak
Knjiga obraduje utjecaj financijske inkluzije stanovništva na regionalni razvitak.j.financijska inkluzija, regionalni razvoj, financiranje
Transcriptional profiling of putative human epithelial stem cells
<p>Abstract</p> <p>Background</p> <p>Human interfollicular epidermis is sustained by the proliferation of stem cells and their progeny, transient amplifying cells. Molecular characterization of these two cell populations is essential for better understanding of self renewal, differentiation and mechanisms of skin pathogenesis. The purpose of this study was to obtain gene expression profiles of alpha 6<sup>+</sup>/MHCI<sup>+</sup>, transient amplifying cells and alpha 6<sup>+</sup>/MHCI<sup>-</sup>, putative stem cells, and to compare them with existing data bases of gene expression profiles of hair follicle stem cells. The expression of Major Histocompatibility Complex (MHC) class I, previously shown to be absent in stem cells in several tissues, and alpha 6 integrin were used to isolate MHCI positive basal cells, and MHCI low/negative basal cells.</p> <p>Results</p> <p>Transcriptional profiles of the two cell populations were determined and comparisons made with published data for hair follicle stem cell gene expression profiles. We demonstrate that presumptive interfollicular stem cells, alpha 6<sup>+</sup>/MHCI<sup>- </sup>cells, are enriched in messenger RNAs encoding surface receptors, cell adhesion molecules, extracellular matrix proteins, transcripts encoding members of IFN-alpha family proteins and components of IFN signaling, but contain lower levels of transcripts encoding proteins which take part in energy metabolism, cell cycle, ribosome biosynthesis, splicing, protein translation, degradation, DNA replication, repair, and chromosome remodeling. Furthermore, our data indicate that the cell signaling pathways Notch1 and NF-κB are downregulated/inhibited in MHC negative basal cells.</p> <p>Conclusion</p> <p>This study demonstrates that alpha 6<sup>+</sup>/MHCI<sup>- </sup>cells have additional characteristics attributed to stem cells. Moreover, the transcription profile of alpha 6<sup>+</sup>/MHCI<sup>- </sup>cells shows similarities to transcription profiles of mouse hair follicle bulge cells known to be enriched for stem cells. Collectively, our data suggests that alpha 6<sup>+</sup>/MHCI<sup>- </sup>cells may be enriched for stem cells. This study is the first comprehensive gene expression profile of putative human epithelial stem cells and their progeny that were isolated directly from neonatal foreskin tissue. Our study is important for understanding self renewal and differentiation of epidermal stem cells, and for elucidating signaling pathways involved in those processes. The generated data base may serve those working with other human epithelial tissue progenitors.</p
Redox status, DNA and HSA binding study of naturally occurring naphthoquinone derivatives
In the present work we modified the procedure for isolation of naphthoquinones α-methylbutyrylshikon (1), acetylshikonin (2) and β-hydroxyisovalerylshikonin (3) from Onosma visianii Clem. We also investigated possible mechanisms of 1, 2 and 3 as antitumor agents. Accordingly, we estimated concentrations of superoxide anion radical (O2.-), nitrite (NO2 -) and glutathione in HCT-116 and MDA-MB-231 cell lines. Compounds 1 and 3 expressed significant prooxidative activity, while all tested compounds exhibited significant increase in nitrite levels. Also, all examined compounds significantly increased the concentration of oxidized glutathione (GSSG), suggesting significant prooxidative disbalance. The levels of reduced glutathione (GSH) were also elevated as a part of antioxidative cell response. The data indicate that induced oxidative imbalance could be one of the triggers for previously recorded decreased viability of HCT-116 and MDA-MB-231 cells exposed to tested naphthoquinone derivatives. Moreover, we examined interactions mode of compounds 1, 2 and 3 with CT-DNA as one of the crucial targets of many molecules that express cytotoxic activity. The results obtained by UV-visible, fluorescence and molecular docking study revealed that 1, 2 and 3 bound to CT-DNA through minor groove binding. Furthermore, the interactions between HSA and 1, 2 and 3 were examined employing the same methods as for the CT-DNA interaction study. Based on the obtained results, it can be concluded that naphthoquinones 1, 2 and 3 could be effectively transported by human serum albumin. As a conclusion, this study provides further insight of antitumor activity of selected naphthoquinones
Internet users' valuation of enhanced data protection on social media: which aspects of privacy are worth the most?
As the development of the Internet and social media has led to pervasive data collection and usage practices, consumers’ privacy concerns have increasingly grown stronger. While previous research has investigated consumer valuation of personal data and privacy, only few studies have investigated valuation of different privacy aspects (e.g., third party sharing). Addressing this research gap in the literature, the present study explores Internet users’ valuations of three different privacy aspects on a social networking service (i.e., Facebook), which are commonly captured in privacy policies (i.e., data collection, data control, and third party sharing). A total of 350 participants will be recruited for an experimental online study. The experimental design will consecutively contrast a conventional, free-of-charge version of Facebook with four hypothetical, privacy-enhanced premium versions of the same service. The privacy-enhanced premium versions will offer (1) restricted data collection on side of the company; (2) enhanced data control for users; and (3) no third party sharing, respectively. A fourth premium version offers full protection of all three privacy aspects. Participants’ valuation of the privacy aspects captured in the premium versions will be quantified measuring willingness-to-pay. Additionally, a psychological test battery will be employed to examine the psychological mechanisms (e.g., privacy concerns, trust, and risk perceptions) underlying the valuation of privacy. Overall, this study will offer insights into valuation of different privacy aspects, thus providing valuable suggestions for economically sustainable privacy enhancements and alternative business models that are beneficial to consumers, businesses, practitioners, and policymakers, alike
Expression of OCT-4 and SOX-2 in Bone Marrow-Derived Human Mesenchymal Stem Cells during Osteogenic Differentiation
AIM: Determine the levels of expression of pluripotency genes OCT-4 and SOX-2 before and after osteogenic differentiation of human mesenchymal stem cells (hMSCs).METHODS: Human MSCs were derived from the bone marrow and differentiated into osteoblasts. The analyses were performed on days 0 and 14 of the cell culture. In vitro differentiation was evaluated due to bone markers – alkaline phosphatase (AP) activity and the messenger RNA (mRNA) expression of AP and bone sialoprotein (BSP). The OCT-4 and SOX-2 expression was evaluated at mRNA level by real-time qPCR and at protein level by immunocytochemistry.RESULTS: In vitro cultures on day 14 showed an increase in AP activity and upregulation of AP and BSP gene expression. OCT-4 and SOX-2 in undifferentiated hMSCs on day 0 is detectable and very low compared to tumor cell lines as a positive control. Immunocytochemistry detected OCT-4 in the cell nuclei prior (day 0) and post differentiation (day 14). On the same time points, cultures were negative for SOX-2 protein.CONCLUSION: Messenger RNA for pluripotency markers OCT-4 and SOX-2 isolated from hMSCs was less present, while OCT-4 protein was detected in cell nuclei prior and post differentiation into osteoblast lineage
Donor-Derived Cell-Free DNA for the Detection of Heart Allograft Injury:The Impact of the Timing of the Liquid Biopsy
Background: In heart transplant recipients, donor-derived cell-free DNA (ddcfDNA) is a potential biomarker for acute rejection (AR), in that increased values may indicate rejection. For the assessment of ddcfDNA as new biomarker for rejection, blood plasma sampling around the endomyocardial biopsy (EMB) seems a practical approach. To evaluate the effect of the EMB procedure on ddcfDNA values, ddcfDNA values before the EMB were pairwise compared to ddcfDNA values after the EMB. We aimed at evaluating whether it matters whether the ddcfDNA sampling is done before or after the EMB-procedure. Methods: Plasma samples from heart transplant recipients were obtained pre-EMB and post-EMB. A droplet digital PCR method was used for measuring ddcfDNA, making use of single-nucleotide polymorphisms that allowed both relative quantification, as well as absolute quantification of ddcfDNA. Results: Pairwise comparison of ddcfDNA values pre-EMB with post-EMB samples (n = 113) showed significantly increased ddcfDNA concentrations and ddcfDNA% in post-EMB samples: an average 1.28-fold increase in ddcfDNA concentrations and a 1.31-fold increase in ddcfDNA% was observed (p = 0.007 and p = 0.03, respectively). Conclusion: The EMB procedure causes iatrogenic injury to the allograft that results in an increase in ddcfDNA% and ddcfDNA concentrations. For the assessment of ddcfDNA as marker for AR, collection of plasma samples before the EMB procedure is therefore essential
Modelling changes in the pharmacokinetics of tacrolimus during pregnancy after kidney transplantation:A retrospective cohort study
Aims: Pregnancy after kidney transplantation is realistic but immunosuppressants should be continued to prevent rejection. Tacrolimus is safe during pregnancy and is routinely dosed based on whole-blood predose concentrations. However, maintaining these concentrations is complicated as physiological changes during pregnancy affect tacrolimus pharmacokinetics. The aim of this study was to describe tacrolimus pharmacokinetics throughout pregnancy and explain the changes by investigating covariates in a population pharmacokinetic model. Methods: Data of pregnant women using a twice-daily tacrolimus formulation following kidney transplantation were retrospectively collected from 6 months before conception, throughout gestation and up to 6 months postpartum. Pharmacokinetic analysis was performed using nonlinear mixed effects modelling. Demographic, clinical and genetic parameters were evaluated as covariates. The final model was evaluated using goodness-of-fit plots, visual predictive checks and a bootstrap analysis. Results: A total of 260 whole-blood tacrolimus predose concentrations from 14 pregnant kidney transplant recipients were included. Clearance increased during pregnancy from 34.5 to 41.7 L/h, by 15, 19 and 21% in the first, second and third trimester, respectively, compared to prior to pregnancy. This indicates a required increase in the tacrolimus dose by the same percentage to maintain the prepregnancy concentration. Haematocrit and gestational age were negatively correlated with tacrolimus clearance (P ≤ 0.01), explaining 18% of interindividual and 85% of interoccasion variability in oral clearance.Conclusions: Tacrolimus clearance increases during pregnancy, resulting in decreased exposure to tacrolimus, which is explained by gestational age and haematocrit. To maintain prepregnancy target whole-blood tacrolimus predose concentrations during pregnancy, increasing the dose is required.</p
Irinotecan-Induced Toxicity:A Pharmacogenetic Study Beyond UGT1A1
Background and objective: Side effects of irinotecan treatment can be dose limiting and may impair quality of life. In this study, we investigated the correlation between single nucleotide polymorphisms (SNPs) in genes encoding enzymes involved in the irinotecan metabolism and transport, outside UGT1A1, and irinotecan-related toxicity. We focused on carboxylesterases, which are involved in formation of the active metabolite SN-38 and on drug transporters. Methods: Patients who provided written informed consent at the Erasmus Medical Center Cancer Institute to the Code Geno study (local protocol: MEC02-1002) or the IRI28-study (NTR-6612) were enrolled in the study and were genotyped for 15 SNPs in the genes CES1, CES2, SLCO1B1, ABCB1, ABCC2, and ABCG2. Results: From 299 evaluable patients, 86 patients (28.8%) developed severe irinotecan-related toxicity. A significantly higher risk of toxicity was seen in ABCG2 c.421C>A variant allele carriers (P = 0.030, OR 1.88, 95% CI 1.06–3.34). Higher age was associated with all grade diarrhea (P = 0.041, OR 1.03, 95% CI 1.00–1.06). In addition, CES1 c.1165-41C>T and CES1 n.95346T>C variant allele carriers had a lower risk of all-grade thrombocytopenia (P = 0.024, OR 0.42, 95% CI 0.20–0.90 and P = 0.018, OR 0.23, 95% CI 0.08–0.79, respectively). Conclusion: Our study indicates that ABCG2 and CES1 SNPs might be used as predictive markers for irinotecan-induced toxicity.</p
Correction:Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene–drug interaction between CYP2D6 and opioids (codeine, tramadol and oxycodone) (European Journal of Human Genetics, (2021), 10.1038/s41431-021-00920-y)
The Data statement was partly wrong and should have read as below. DATA AVAILABILITY All data and material are either included in the Supplementary information or publicly available (i.e., the published articles, PubMed). The guidelines and background information are available on the website of the Royal Dutch Pharmacists Association (KNMP) (Pharmacogenetic Recommendations. Available from: https://www.knmp.nl/). The guidelines and background information will be available on PharmGKB.org
- …