303 research outputs found

    Ogroženost za padce v terciarni bolnišnici

    Get PDF
    Uvod: Namen raziskave je bil ugotoviti, kakšna je ogroženost za padce odraslih pacientov v akutni  zdravstveni obravnavi ter kakšne so razlike v ogroženosti glede na spol, starost, kraj pacientove obravnave (kliniko) in specialnost stroke ter kategorijo zahtevnosti bolnišnične zdravstvene nege. Metode: Uporabljeno je bilo kvantitativno raziskovanje – presečna opazovalna raziskava. Vzorec (n = 1361) je vključeval odrasle paciente, hospitalizirane v Univerzitetnem kliničnem centru Ljubljana. Podatki so se zbirali na za to posebej  razvitem instrumentu, pri čemer je bila ogroženost za padce vrednotena z Morsejino lestvico. Podatki so se zbirali od oktobra do novembra 2015. Poleg osnovne deskriptivne statistike so bili uporabljeni tudi Mann-Whitneyjev test, test ANOVA in Pearsonov korelacijski test. Rezultati: Raziskava je pokazala, da je v akutni zdravstveni obravnavi v slovenski terciarni bolnišnici zmerno do visoko ogroženih za padce 69,1 % (n = 940) pacientov, od tega je 28,0 % (n = 381) visoko ogroženih. Ogroženost pacientov za padce je pozitivno povezana s starostjo (r = 0,462, p < 0,001). Razlikuje se tudi glede na kliniko (F = 29,210, p < 0,001), specialnost stroke (Z = –5,660, p < 0,001) ter kategorijo zahtevnosti zdravstvene nege (F = 125,464, p < 0,001). Diskusija in zaključek: Pomembno bolj ogroženi so starejši, pacienti, razvrščeni v višje kategorije zahtevnosti bolnišnične zdravstvene nege, ter pacienti, zdravljeni v okviru internističnih strok. Rutinsko ocenjevanje ogroženosti, načrtovanje in izvajanje ukrepov za preprečevanje padcev so temelji zmanjševanja padcev

    Supplementary data for the article: Vlahovic, F.; Gruden, M.; Swart, M. Rotating Iron and Titanium Sandwich Complexes. Chemistry - A European Journal 2018, 24 (20), 5070–5073. https://doi.org/10.1002/chem.201704829

    Get PDF
    Supplementary material for: [https://onlinelibrary.wiley.com/doi/full/10.1002/chem.201704829]Related to published version: [http://cherry.chem.bg.ac.rs/handle/123456789/2129]Related to accepted version: [http://cherry.chem.bg.ac.rs/handle/123456789/2983

    Exploring anatomy of experiment with DFT: Quantitative structure-activity relationship of Substituted arylazo pyridine dyes in Photocatalytic reaction

    Get PDF
    A series of arylazo pyridone dyes was synthesized by changing the type of the substituent group in the diazo moiety, ranging from strong electron-donating to strong electronwithdrawing groups. The structural and electronic properties of the investigated dyes was calculated at the M062X/6-31+G(d,p) level of theory. The observed good linear correlations between atomic charges and Hammett σp constants provided a basis to discuss the transmission of electronic substituent effects through a dye framework. The reactivity of synthesized dyes was tested through their decolorization efficiency in TiO2 photocatalytic system (Degussa P-25). Quantitative structure-activity relationship analysis revealed a strong correlation between reactivity of investigated dyes and Hammett substituent constants. The reaction was facilitated by electron-withdrawing groups, and retarded by electron-donating ones. Quantum mechanical calculations were used in order to describe the mechanism of the photocatalytic oxidation reactions of investigated dyes and interpret their reactivity within the framework of the Density Functional Theory (DFT). According to DFT based reactivity descriptors, i.e. Fukui functions and local softness, the active site moves from azo nitrogen atom linked to benzene ring to pyridone carbon atom linked to azo bond, going from dyes with electron-donating groups to dyes with electron-withdrawing groups26th Young Investigators’ Seminar on Analytical Chemistry, June 24 – 27, 2019, Pardubice, Czech Republi

    Izračunavanje Jan-Telerovih parametara primenom teorije funkcionala gustine

    Get PDF
    In this review, we present Density Functional Theory (DFT) procedure to calculate the Jahn-Teller (JT) parameters in a non-empirical way, which does not depend on the system at hand. Moreover, the Intrinsic Distortion Path (IDP) model that gives further insight into the mechanism of the distortion is presented. Summarized results and their comparison to the experimentally estimated values and high-level ab initio calculations, not only proves the good ability of used approach but also gives many answers on intriguing behavior of the JT active molecules.У овом прегледном раду, представљена је не-емпиријска процедура за израчунавање Јан-Телерових параметара применом Теорије функционала густине, која не зависи од конкретног система који се проучава. Представљен је и модел Својственог пута дисторзије, који даје додатни увид у механизам дисторзије. Сумирани резултати и њихово поређење са експериментално процењеним вредностима, као и поређење са резултатима ab initio прорачуна високог нивоа, доказују тачност и велику применљивост коришћене процедуре. Такође, овде приказани рачунарски приступ даје многе одговоре на интригантне особине Јан-Телер-активних молекула.This is peer-reviewed version of the article: M. Zlatar, M. Gruden, J. Serb. Chem. Soc. (2019) [https://doi.org/10.2298/JSC190510064Z]This article is part of Special Issue Devoted to Prof. emeritus Miljenko PerićThe published version of the article: [http://cer.ihtm.bg.ac.rs/handle/123456789/3050

    Rational design of single molecule magnets

    Get PDF
    In this work, computational study of the magnetic anisotropy in series of transition metal complexes when changing the metal ion or the ligands in a controlled way will be presented. In order to achieve this goal, first, it was necessary to correctly determine the spin-ground state of transition metal ions, not straightforward task. We performed detailed density functional based calculations probing the spin-state of these systems using variety of density functional approximations (DFAs). OPBE, SSB-D and S12g emerged to be one of the best DFAs for this task. In a second step, LF-DFT is applied for the calculations of ZFS parameters

    The role of DFT in characterization of coordination compounds: opportunities and challenges

    Get PDF
    In the last two decades, considerable theoretical efforts have been made to develop suitable methods for predicting and rationalizing the complicated electronic structure of TM compounds. However, the matter remains open and calculations on molecules with TM centers are still far from being straightforward. The main reason is that these calculations require a balanced treatment of both static and dynamic correlations. Furthermore, it is necessary to understand the influences of coordination number, molecular symmetry, ligand field strength, spin-orbit coupling, spin and oxidation states, redox potential, spin and charge localization, electronic degeneracies, etc. Finally, a complete understanding of the electronic structure of TM compounds and their properties requires investigations that go beyond the ground states alone, i.e., the consideration of excited states. In this talk we will present our efforts to understand and control metal-ligand bonding based on density functional calculations, considering all its limitations. A fundamental understanding of all factors influencing the properties of a molecule is inherently related to its electronic structure. In the case of a transition metal (TM) complex, the electronic structure is determined by the number, geometry, and character (e.g., σ-donating or π*- backdonating) of its metal-ligand bonds. In addition, a variety of examples will show how experimental results and properties оf coordination compounds can be rationalized using DFT calculations.[https://www.eicc6.at/]Invited lecture - Maja Grude

    Coordination preferences of Shiff base ligands with transition metals: DFT study

    Get PDF
    To rationalize coordination preferences of the ligands to form mono- or binuclear complexes and coordinate differently, together with the electronic structure of transition metal ions, we performed Density Functional Theory (DFT) calculations accompanied by the Energy Decomposition Analysis and Ligand Field Theory. The results explain the different ways of ligand binding and how the electronic structure of the central metal ion and the spin state affect the coordination pattern. Our results pave the way for the rational design of transition-metal complexes

    What is the nature of bonding in [Fe(CO)3(NO)]− and [Fe(CO)4]2−?

    Get PDF
    To shed new light on the electronic structure of [Fe(CO)3(NO)]¯ complex ion, DFT-based analysis of the nature of chemical bonding has been performed. For this purpose, the extended transition state energy decomposition analysis alongside the natural orbitals for chemical valence has been used and results are compared to the nature and the strength of the interactions in isoelectronic [Fe(CO)4]2− complex ion. Based on orbital contribution to the interaction energy and charge flow between the fragments, the ground state can be best described as an open-shell singlet with zero formal oxidation state on iron and negative charge on the nitrosyl ligand. It is in agreement with the different nature of interactions when NO+ and CO ligands are bonded to Fe(−II).This is the peer-reviewed version of the following article: M. Gruden, M. Zlatar, What is the nature of bonding in |Fe(CO)3(NO)|− and |Fe(CO)4|2−?, Theoretical Chemistry Accounts, 2020, 139, 7, 126, doi: [https://doi.org/10.1007/s00214-020-02639-3]Supplementary material: [http://cherry.chem.bg.ac.rs/handle/123456789/4015

    Supplementary data for article: M. Gruden, M. Zlatar, What is the nature of bonding in |Fe(CO)3(NO)|− and |Fe(CO)4|2−?, Theoretical Chemistry Accounts, 2020, 139, 7, 126, https://doi.org/10.1007/s00214-020-02639-3

    Get PDF
    Related to accepted version: [http://cherry.chem.bg.ac.rs/handle/123456789/4014]Supplementary material for: [https://link.springer.com/article/10.1007%2Fs00214-020-02639-3]Related to published version: [http://cherry.chem.bg.ac.rs/handle/123456789/4013

    Rational Design of Single-Ion Magnets – Computational Chemistry Approach

    Get PDF
    In this talk, the computational study of magnetic anisotropy in a series of transition metal complexes will be presented when changing the metal ion or the ligands in a controlled way. We will discuss the influences of coordination number, molecular symmetry, ligand field strength, spin-orbit coupling, spin and oxidation states, redox potential, spin and charge localization, electronic degeneracies, etc. A fundamental understanding of all these factors is a prerequisite for fulfilling our ambition - to develop a new generation of single-ion magnets.Plenary talk - M. Zlata
    corecore