14 research outputs found

    Incorporating DNA Methyltransferase Inhibitors (DNMTis) in the Treatment of Genitourinary Malignancies: A Systematic Review

    Get PDF
    Inhibition of DNA methyltransferases (DNMTs) has emerged as a novel treatment strategy in solid tumors. Aberrant hypermethylation in promoters of critical tumor suppressor genes is the basis for the idea that treatment with hypomethylating agents may lead to the restoration of a “normal” epigenome and produce clinically meaningful therapeutic outcomes. The aim of this review article is to summarize the current state of knowledge of DNMT inhibitors in the treatment of genitourinary malignancies. The efficacy of these agents in genitourinary malignancies was reported in a number of studies and suggests a role of induced DNA hypomethylation in overcoming resistance to conventional cytotoxic treatments. The clinical significance of these findings should be further investigated

    Normal Breast-Derived Epithelial Cells with Luminal and Intrinsic Subtype-Enriched Gene Expression Document Interindividual Differences in Their Differentiation Cascade

    Get PDF
    Cell-type origin is one of the factors that determine molecular features of tumors, but resources to validate this concept are scarce because of technical difficulties in propagating major cell types of adult organs. Previous attempts to generate such resources to study breast cancer have yielded predominantly basal-type cell lines. We have created a panel of immortalized cell lines from core breast biopsies of ancestry-mapped healthy women that form ductal structures similar to normal breast in 3D cultures and expressed markers of major cell types, including the luminal-differentiated cell-enriched ERÎą-FOXA1-GATA3 transcription factor network. We have also created cell lines from PROCR (CD201)+/EpCAM- cells that are likely the "normal" counterpart of the claudin-low subtype of breast cancers. RNA-seq and PAM50-intrinsic subtype clustering identified these cell lines as the "normal" counterparts of luminal A, basal, and normal-like subtypes and validated via immunostaining with basal-enriched KRT14 and luminal-enriched KRT19. We further characterized these cell lines by flow cytometry for distribution patterns of stem/basal, luminal-progenitor, mature/differentiated, multipotent PROCR+ cells, and organogenesis-enriched epithelial/mesenchymal hybrid cells using CD44/CD24, CD49f/EpCAM, CD271/EpCAM, CD201/EpCAM, and ALDEFLUOR assays and E-cadherin/vimentin double staining. These cell lines showed interindividual heterogeneity in stemness/differentiation capabilities and baseline activity of signaling molecules such as NF-ÎşB, AKT2, pERK, and BRD4. These resources can be used to test the emerging concept that genetic variations in regulatory regions contribute to widespread differences in gene expression in "normal" conditions among the general population and can delineate the impact of cell-type origin on tumor progression.Significance: In addition to providing a valuable resource for the breast cancer research community to investigate cell-type origin of different subtypes of breast cancer, this study highlights interindividual differences in normal breast, emphasizing the need to use "normal" cells from multiple sources as controls to decipher the effects of cancer-specific genomic aberrations

    Cisplatin +/− rucaparib after preoperative chemotherapy in patients with triple-negative or BRCA mutated breast cancer

    Get PDF
    Patients with triple-negative breast cancer (TNBC) who have residual disease after neoadjuvant therapy have a high risk of recurrence. We tested the impact of DNA-damaging chemotherapy alone or with PARP inhibition in this high-risk population. Patients with TNBC or deleterious BRCA mutation (TNBC/BRCAmut) who had >2 cm of invasive disease in the breast or persistent lymph node (LN) involvement after neoadjuvant therapy were assigned 1:1 to cisplatin alone or with rucaparib. Germline mutations were identified with BROCA analysis. The primary endpoint was 2-year disease-free survival (DFS) with 80% power to detect an HR 0.5. From Feb 2010 to May 2013, 128 patients were enrolled. Median tumor size at surgery was 1.9 cm (0-11.5 cm) with 1 (0-38) involved LN; median Residual Cancer Burden (RCB) score was 2.6. Six patients had known deleterious BRCA1 or BRCA2 mutations at study entry, but BROCA identified deleterious mutations in 22% of patients with available samples. Toxicity was similar in both arms. Despite frequent dose reductions (21% of patients) and delays (43.8% of patients), 73% of patients completed planned cisplatin. Rucaparib exposure was limited with median concentration 275 (82-4694) ng/mL post-infusion on day 3. The addition of rucaparib to cisplatin did not increase 2-year DFS (54.2% cisplatin vs. 64.1% cisplatin + rucaparib; P = 0.29). In the high-risk post preoperative TNBC/BRCAmut setting, the addition of low-dose rucaparib did not improve 2-year DFS or increase the toxicity of cisplatin. Genetic testing was underutilized in this high-risk population

    Chemometric Analysis of Urinary Volatile Organic Compounds to Monitor the Efficacy of Pitavastatin Treatments on Mammary Tumor Progression over Time

    Get PDF
    Volatile organic compounds (VOCs) in urine are potential biomarkers of breast cancer. Previously, our group has investigated breast cancer through analysis of VOCs in mouse urine and identified a panel of VOCs with the ability to monitor tumor progression. However, an unanswered question is whether VOCs can be exploited similarly to monitor the efficacy of antitumor treatments over time. Herein, subsets of tumor-bearing mice were treated with pitavastatin at high (8 mg/kg) and low (4 mg/kg) concentrations, and urine was analyzed through solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS). Previous investigations using X-ray and micro-CT analysis indicated pitavastatin administered at 8 mg/kg had a protective effect against mammary tumors, whereas 4 mg/kg treatments did not inhibit tumor-induced damage. VOCs from mice treated with pitavastatin were compared to the previously analyzed healthy controls and tumor-bearing mice using chemometric analyses, which revealed that mice treated with pitavastatin at high concentrations were significantly different than tumor-bearing untreated mice in the direction of healthy controls. Mice treated with low concentrations demonstrated significant differences relative to healthy controls and were reflective of tumor-bearing untreated mice. These results show that urinary VOCs can accurately and noninvasively predict the efficacy of pitavastatin treatments over time

    Platelet Delta (δ)-Storage Pool Deficiency: A Case Series and Review of the Literature

    No full text
    Hereditary platelet delta (δ)-storage pool deficiency is a rare condition in which there are fewer dense granules in platelets disrupting primary hemostasis. It can cause a mild–moderate bleeding tendency with normal coagulation studies; hence, it is an underdiagnosed diagnostic challenge. The authors present three patients with hereditary platelet delta (δ)-storage pool deficiency who had heavy menstrual bleeding, excessive bleeding following surgery, mucocutaneous bleeding, and a bleeding score greater than or equal to 6. These cases reveal the susceptibility of underdiagnosing platelet disorders and the significance of utilizing a bleeding assessment tool to help guide further workup with transmission electron microscopy to visualize the fewer dense granules in platelets. Although bleeding is typically moderate, it can be severe in certain scenarios, like after mucosal surgeries, and can lead to death, highlighting the importance of the condition’s recognition and prophylactic treatment

    Tracking the Progression of Triple Negative Mammary Tumors over Time by Chemometric Analysis of Urinary Volatile Organic Compounds

    Get PDF
    Previous studies have shown that volatile organic compounds (VOCs) are potential biomarkers of breast cancer. An unanswered question is how urinary VOCs change over time as tumors progress. To explore this, BALB/c mice were injected with 4T1.2 triple negative murine tumor cells in the tibia. This typically causes tumor progression and osteolysis in 1–2 weeks. Samples were collected prior to tumor injection and from days 2–19. Samples were analyzed by headspace solid phase microextraction coupled to gas chromatography–mass spectrometry. Univariate analysis identified VOCs that were biomarkers for breast cancer; some of these varied significantly over time and others did not. Principal component analysis was used to distinguish Cancer (all Weeks) from Control and Cancer Week 1 from Cancer Week 3 with over 90% accuracy. Forward feature selection and linear discriminant analysis identified a unique panel that could identify tumor presence with 94% accuracy and distinguish progression (Cancer Week 1 from Cancer Week 3) with 97% accuracy. Principal component regression analysis also demonstrated that a VOC panel could predict number of days since tumor injection (R2 = 0.71 and adjusted R2 = 0.63). VOC biomarkers identified by these analyses were associated with metabolic pathways relevant to breast cancer
    corecore