1,700 research outputs found

    Magnetic and orbital order in overdoped bilayer manganites

    Full text link
    The magnetic and orbital orders for the bilayer manganites in the doping region 0.5<x<1.00.5 < x <1.0 have been investigated from a model that incorporates the two ege_g orbitals at each Mn site, the inter-orbital Coulomb interaction and lattice distortions. The usual double exchange operates via the ege_g orbitals. It is shown that such a model reproduces much of the phase diagram recently obtained for the bilayer systems in this range of doping. The C-type phase with (π,0,π\pi,0,\pi) spin order seen by Ling et al. appears as a natural consequence of the layered geometry and is stabilised by the static distortions of the system. The orbital order is shown to drive the magnetic order while the anisotropic hopping across the ege_g orbitals, layered nature of the underlying structure and associated static distortions largely determine the orbital arrangements.Comment: 8 pages, 5 figure

    An extended Falicov-Kimball model on a triangular lattice

    Full text link
    The combined effect of frustration and correlation in electrons is a matter of considerable interest of late. In this context a Falicov-Kimball model on a triangular lattice with two localized states, relevant for certain correlated systems, is considered. Making use of the local symmetries of the model, our numerical study reveals a number of orbital ordered ground states, tuned by the small changes in parameters while quantum fluctuations between the localized and extended states produce homogeneous mixed valence. The inversion symmetry of the Hamiltonian is broken by most of these ordered states leading to orbitally driven ferroelectricity. We demonstrate that there is no spontaneous symmetry breaking when the ground state is inhomogeneous. The study could be relevant for frustrated systems like GdI2GdI_2, NaTiO2NaTiO_2 (in its low temperature C2/m phase) where two Mott localized states couple to a conduction band.Comment: 6 pages, 8 figure

    Semiclassical Electron Correlation in Density-Matrix Time-Propagation

    Full text link
    Lack of memory (locality in time) is a major limitation of almost all present time-dependent density functional approximations. By using semiclassical dynamics to compute correlation effects within a density-matrix functional approach, we incorporate memory, including initial-state dependence, as well as changing occupation numbers, and predict more observables in strong-field applications.Comment: 4.5 pages, 1 figur

    Time-dependent density functional theory: Past, present, and future

    Full text link
    Time-dependent density functional theory (TDDFT) is presently enjoying enormous popularity in quantum chemistry, as a useful tool for extracting electronic excited state energies. This article discusses how TDDFT is much broader in scope, and yields predictions for many more properties. We discuss some of the challenges involved in making accurate predictions for these properties.Comment: 12 pages, 4 figure

    Gluconeogenic mutations in Pseudomonas aeruginosa: genetic linkage between fructose-bisphosphate aldolase and phosphoglycerate kinase

    Get PDF
    Mutants of mucoid Pseudomonas aeruginosa defective in fructose-bisphosphate aldolase (FBA), NADP-linked glyceraldehyde-3-phosphate dehydrogenase (GAP) or 3-phosphoglycerate kinase (PGK) were unable to grow on gluconeogenic precursors like glutamate, succinate or lactate. The gap and pgk mutants could grow on glucose, gluconate or glycerol, but fba mutants could not. This suggests that the metabolism of glucose or gluconate does not require either PGK or NADP-linked GAP but does require the operation of the aldolase-catalysed step. For gluconeogenesis, however, all three steps are essential. Recombinant plasmids carrying genes for FBA, PGK, GAP or phospho-2-keto-3-deoxygluconate aldolase (EDA) activities were constructed from a genomic library of mucoid P. aeruginosa selecting for complementation of deficiency mutations. Analysis of their complementation profile indicated that one group of plasmids carried fba and pgk genes, while another group carried eda, 6-phosphogluconate dehydratase (edd) and glucose-6-phosphate dehydrogenase (zwf) genes. The gap gene was not linked to any of these markers. Partial restoration of FBA activity in spontaneous revertants of Fba mutants was accompanied by a concomitant loss of PGK activity. These experiments indicate a linkage between the fba and pgk genes on the P. aeruginosa chromosome

    On the density-potential mapping in time-dependent density functional theory

    Get PDF
    The key questions of uniqueness and existence in time-dependent density functional theory are usually formulated only for potentials and densities that are analytic in time. Simple examples, standard in quantum mechanics, lead however to non-analyticities. We reformulate these questions in terms of a non-linear Schr\"odinger equation with a potential that depends non-locally on the wavefunction.Comment: 8 pages, 2 figure

    Charge order and phase segregation in overdoped bilayer manganites

    Full text link
    There have been recent reports of charge ordering around x=0.5x=0.5 in the bilayer manganites. At x=0.5x=0.5, there appears to be a coexistence region of layered A-type antiferromagnetc and charge order. There are also reports of orbital order in this region without any Jahn-Teller effect. Based on physical grounds, this region is investigated from a model that incorporates the two ege_g orbitals at each Mn site and a near-neighbour Coulomb repulsion. It is shown that there indeed is both charge and orbital order close to the half-doped region coincident with a layered magnetic structure. Although the orbital order is known to drive the magnetic order, the layered magnetic structure is also favoured in this system by the lack of coherent transport across the planes and the reduced dimensionality of the lattice. The anisotropic hopping across the ege_g orbitals and the underlying layered structure largely determine the orbital arrangements in this region, while the charge order is primarily due to the long range interactions.Comment: 6 pages, 6 figure

    Ferromagnetism in Fe-substituted spinel semiconductor ZnGa2_2O4_4

    Full text link
    Motivated by the recent experimental observation of long range ferromagnetic order at a relatively high temperature of 200K in the Fe-doped ZnGa2_2O4_4 semiconducting spinel, we propose a possible mechanism for the observed ferromagnetism in this system. We show, supported by band structure calculations, how a model similar to the double exchange model can be written down for this system and calculate the ground state phase diagram for the two cases where Fe is doped either at the tetrahedral position or at the octahedral position. We find that in both cases such a model can account for a stable ferromagnetic phase in a wide range of parameter space. We also argue that in the limit of high Fe2+^{2+} concentration at the tetrahedral positions a description in terms of a two band model is essential. The two ege_g orbitals and the hopping between them play a crucial role in stabilizing the ferromagnetic phase in this limit. The case when Fe is doped simultaneously at both the tetrahedral and the octahedral position is also discussed.Comment: 10 pages, 9 figures, added text, J. Phys. Cond. Mat. (to appear
    corecore