1,870 research outputs found

    Long-range excitations in time-dependent density functional theory

    Full text link
    Adiabatic time-dependent density functional theory fails for excitations of a heteroatomic molecule composed of two open-shell fragments at large separation. Strong frequency-dependence of the exchange-correlation kernel is necessary for both local and charge-transfer excitations. The root of this is static correlation created by the step in the exact Kohn-Sham ground-state potential between the two fragments. An approximate non-empirical kernel is derived for excited molecular dissociation curves at large separation. Our result is also relevant for the usual local and semi-local approximations for the ground-state potential, as static correlation there arises from the coalescence of the highest occupied and lowest unoccupied orbital energies as the molecule dissociates.Comment: 7 pages, 2 figure

    Comment on "Critique of the foundations of time-dependent density functional theory" [Phys. Rev.A. 75, 022513 (2007)]

    Full text link
    A recent paper (Phys. Rev A. 75, 022513 (2007), arXiv:cond-mat/0602020) challenges exact time-dependent density functional theory (TDDFT) on several grounds. We explain why these criticisms are either irrelevant or incorrect, and that TDDFT is both formally exact and predictive.Comment: 4 pages; This is a Comment on the paper cited above, also at arXiv:cond-mat/060202

    Continuum states from time-dependent density functional theory

    Full text link
    Linear response time-dependent density functional theory is used to study low-lying electronic continuum states of targets that can bind an extra electron. Exact formulas to extract scattering amplitudes from the susceptibility are derived in one dimension. A single-pole approximation for scattering phase shifts in three dimensions is shown to be more accurate than static exchange for singlet electron-He+^+ scattering.Comment: 5 pages, 2 figures, J. Chem. Phys. accepte
    • …
    corecore