68 research outputs found
Selective receptor expression restricts Nipah virus infection of endothelial cells
Nipah virus (NiV) is a highly pathogenic paramyxovirus that causes severe diseases in animals and humans. Endothelial cell (EC) infection is an established hallmark of NiV infection in vivo. Despite systemic virus spread via the vascular system, EC in brain and lung are preferentially infected whereas EC in other organs are less affected. As in vivo, we found differences in the infection of EC in cell culture. Only brain-derived primary or immortalized EC were found to be permissive to NiV infection. Using a replication-independent fusion assay, we could show that the lack of infection in non-brain EC was due to a lack of receptor expression. The NiV entry receptors ephrinB2 (EB2) or ephrinB3 were only expressed in brain endothelia. The finding that EB2 expression in previously non-permissive aortic EC rendered the cells permissive to infection then demonstrated that EB2 is not only necessary but also sufficient to allow the establishment of a productive NiV infection. This strongly suggests that limitations in receptor expression restrict virus entry in certain EC subsets in vivo, and are thus responsible for the differences in EC tropism observed in human and animal NiV infections
Actin filaments disruption and stabilization affect measles virus maturation by different mechanisms
Ephrin-B2 expression critically influences Nipah virus infection independent of its cytoplasmic tail
<p>Abstract</p> <p>Background</p> <p>Cell entry and cell-to-cell spread of the highly pathogenic Nipah virus (NiV) requires binding of the NiV G protein to cellular ephrin receptors and subsequent NiV F-mediated fusion. Since expression levels of the main NiV entry receptor ephrin-B2 (EB2) are highly regulated <it>in vivo </it>to fulfill the physiological functions in axon guidance and angiogenesis, the goal of this study was to determine if changes in the EB2 expression influence NiV infection.</p> <p>Results</p> <p>Surprisingly, transfection of increasing EB2 plasmid concentrations reduced cell-to-cell fusion both in cells expressing the NiV glycoproteins and in cells infected with NiV. This effect was attributed to the downregulation of the NiV glycoproteins from the cell surface. In addition to the influence on cell-to-cell fusion, increased EB2 expression significantly reduced the total amount of NiV-infected cells, thus interfered with virus entry. To determine if the negative effect of elevated EB2 expression on virus entry is a result of an increased EB2 signaling, receptor function of a tail-truncated and therefore signaling-defective ÎcEB2 was tested. Interestingly, ÎcEB2 fully functioned as NiV entry and fusion receptor, and overexpression also interfered with virus replication.</p> <p>Conclusion</p> <p>Our findings clearly show that EB2 signaling does not account for the striking negative impact of elevated receptor expression on NiV infection, but rather that the ratio between the NiV envelope glycoproteins and surface receptors critically influence cell-to-cell fusion and virus entry.</p
Taxonomy of the order Mononegavirales : update 2016
In 2016, the order Mononegavirales was emended through the addition of two new families (Mymonaviridae and Sunviridae), the elevation of the paramyxoviral subfamily Pneumovirinae to family status (Pneumoviridae), the addition of five free-floating genera (Anphevirus, Arlivirus, Chengtivirus, Crustavirus, and Wastrivirus), and several other changes at the genus and species levels. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV)
Taxonomy of the order Mononegavirales: update 2017.
In 2017, the order Mononegavirales was expanded by the inclusion of a total of 69 novel species. Five new rhabdovirus genera and one new nyamivirus genus were established to harbor 41 of these species, whereas the remaining new species were assigned to already established genera. Furthermore, non-Latinized binomial species names replaced all paramyxovirus and pneumovirus species names, thereby accomplishing application of binomial species names throughout the entire order. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV)
Nipah Virus Impairs Autocrine IFN Signaling by Sequestering STAT1 and STAT2 into Inclusion Bodies
Nipah virus (NiV) is an emerging zoonotic paramyxovirus that causes fatal infections in humans. As with most disease-causing viruses, the pathogenic potential of NiV is linked to its ability to block antiviral responses, e.g., by antagonizing IFN signaling through blocking STAT proteins. One of the STAT1/2-binding proteins of NiV is the phosphoprotein (P), but its functional role in IFN antagonism in a full viral context is not well defined. As NiV P is required for genome replication and specifically accumulates in cytosolic inclusion bodies (IBs) of infected cells, we hypothesized that this compartmentalization might play a role in P-mediated IFN antagonism. Supporting this notion, we show here that NiV can inhibit IFN-dependent antiviral signaling via a NiV P-dependent sequestration of STAT1 and STAT2 into viral IBs. Consequently, the phosphorylation/activation and nuclear translocation of STAT proteins in response to IFN is limited, as indicated by the lack of nuclear pSTAT in NiV-infected cells. Blocking autocrine IFN signaling by sequestering STAT proteins in IBs is a not yet described mechanism by which NiV could block antiviral gene expression and provides the first evidence that cytosolic NiV IBs may play a functional role in IFN antagonism
Einfluss gezielter Mutationen auf die biologische AktivitÀt des OberflÀchen-Glykoproteins eines afrikanischen Henipavirus
Hendra- und Nipahviren stellen die beiden hochpathogenen Vertreter des Genus
Henipavirus dar. Ihr natĂŒrlicher Wirt sind Flughunde der Gattung Pteropus. WĂ€hrend die
Infektion in Flughunden asymptomatisch verlÀuft, verursachen Henipaviren in Menschen
und anderen SĂ€ugetieren, wie Schweinen oder Pferden, schwerwiegende Infektionen
und gehören deshalb zu den sogenannten BSL-4 Erregern. Bis vor einigen Jahren ging
man davon aus, dass das Vorkommen der Henipaviren auf SĂŒdostasien und Australien
beschrÀnkt ist. Inzwischen gibt es jedoch immer mehr Hinweise darauf, dass das
Verbreitungsgebiet der Henipaviren deutlich gröĂer ist. So wurden beispielsweise in
Westafrika (Ghana) Henipavirus-Ă€hnliche RNA-Sequenzen aus Flughunden der Spezies
Eidolon helvum isoliert. Eines dieser afrikanischen Henipaviren, Kumasivirus (KV),
konnte vollstÀndig sequenziert werden. Da jedoch bis heute kein vermehrungsfÀhiges
Virus aus Flughunden isoliert werden konnte, kann das zoonotische Potential neuer
Henipaviren nur durch die funktionelle Charakterisierung einzelner viraler Proteine im
Vergleich zu den homologen Proteinen bekannter humanpathogener Henipaviren
abgeschÀtzt werden.
Die beiden viralen OberflĂ€chenproteine G und F sind fĂŒr den Eintritt von Henipaviren in
Wirtszellen und ihre Ausbreitung auf Nachbarzellen von zentraler Bedeutung. Nur wenn
das G-Protein erfolgreich an seinen zellulÀren Rezeptor gebunden hat und seine
sogenannte Fusionshelferfunktion ausĂŒbt, kann das F-Protein die Virus-Zell- oder die
Zell-Zell-Fusion einleiten. Es konnte bereits gezeigt werden, dass die
OberflÀchenexpression und die FusionshelferaktivitÀt des KV-G Proteins im Vergleich
zu anderen Henipavirus Glykoproteinen deutlich reduziert ist. Um die Ursache hierfĂŒr
aufzuklÀren, wurde in dieser Arbeit das KV-G Protein im Vergleich zum G-Protein des
pathogenen Nipahvirus (NiV-G) auf molekularer Ebene charakterisiert. DafĂŒr wurden
verschiedene Mutationen in das Protein eingefĂŒgt, die das N-Glykosylierungsmuster, die
Oligomerisierung oder die Endozytose des Proteins beeinflussten. Western Blot
Analysen, metabolische Markierungen sowie funktionelle Fusionsassays ergaben, dass
das KV-G Protein, wie auch das NiV-G, sechs N-Glykane besitzt, die alle fĂŒr den
OberflÀchentransport und die biologische AktivitÀt essentiell sind. Die Oligomerisierung
des KV-G Proteins scheint sich jedoch von der des NiV-G Proteins zu unterscheiden.
KV-G wird nicht in einem ausgewogenen Dimer-Tetramer-VerhÀltnis exprimiert, sondern
bildet hauptsÀchlich hocholigomere Formen aus. Cystein-Mutationen in der StieldomÀne
des KV-G Proteins fĂŒhrten zwar zu einer VerĂ€nderung des Oligomerisierungsmusters,
allerdings konnte weder die OberflÀchenexpression noch die Fusionshelferfunktion
verbessert werden. Interessanterweise fĂŒhrte jedoch die Mutation eines nicht
konservierten Cysteins in der KopfdomÀne zu einer signifikant gesteigerten
Fusionshelferfunktion des KV-G Proteins. Die AktivitÀt konnte weiter gesteigert werden,
wenn zusÀtzlich das Endozytose-Motiv in der zytoplasmatischen DomÀne zerstört
wurde.
In dieser Arbeit konnte zum ersten Mal eine signifikant gesteigerte AktivitÀt (gain of
function) eines Glykoproteins eines afrikanischen Henipavirus nachgewiesen werden.
Auch wenn die biologische AktivitÀt des KV-G Proteins im Vergleich zu Glykoproteinen
hochpathogener Henipaviren immer noch stark eingeschrÀnkt ist, muss davon
ausgegangen werden, dass durch wenige adaptive Punktmutationen afrikanische
Henipaviren mit gesteigerter Funktion und damit eventuell höherem zoonotischen
Potential entstehen können
- âŠ