18 research outputs found
Serotonin signaling through the 5-HT1B receptor and NADPH oxidase 1 in pulmonary arterial hypertension
Objective: Serotonin can induce human pulmonary artery smooth muscle cell (hPASMC) proliferation through reactive oxygen species (ROS), influencing the development of pulmonary arterial hypertension (PAH). We hypothesise that in PASMCs, serotonin induces oxidative stress through NADPH-oxidase-derived ROS generation and reduced Nrf-2 anti-oxidant systems, promoting vascular injury.
Approach and Results: HPASMCs from controls and PAH patients, and PASMCs from Nox1-/- mice, were stimulated with serotonin in the absence/presence of inhibitors of Src kinase, the 5-HT1B receptor and NADPH oxidase 1 (Nox1). Markers of fibrosis were also determined. The pathophysiological significance of our findings was examined in vivo in serotonin transporter overexpressing (SERT+) female mice, a model of pulmonary hypertension (PH).
We confirmed serotonin increased superoxide and H2O2 production in these cells. For the first time, we show that serotonin increased oxidized protein tyrosine phosphatases and peroxiredoxin-SO3H and decreased Nrf-2 and catalase activity in hPASMCs. ROS generation was exaggerated, and dependent on c-Src, 5-HT1B receptor and the serotonin transporter in PAH-hPASMCs. Proliferation and extracellular matrix remodeling were exaggerated in PAH-hPASMCs and dependent on 5-HT1B receptor signaling and Nox1, confirmed in PASMCs from Nox1-/- mice. In SERT+ mice, SB216641, a 5-HT1B receptor antagonist, prevented development of PH in a ROS-dependent manner.
Conclusions: Serotonin can induce c-Src-regulated Nox1-induced ROS and Nrf-2 dysregulation, contributing to increased post-translational oxidative modification of proteins, activation of redox-sensitive signaling pathways in hPASMCs; associated with mitogenic responses. 5-HT1B receptors contribute to experimental PH by inducing lung ROS production. Our results suggest 5-HT1B receptor-dependent c-Src-Nox1-pathways contribute to vascular remodeling in PAH
Obesity alters oestrogen metabolism and contributes to pulmonary arterial hypertension
Obesity is a common comorbidity for pulmonary arterial hypertension (PAH). Additionally, oestrogen and its metabolites are risk factors for the development of PAH. Visceral adipose tissue (VAT) is a major site of oestrogen production; however, the influence of obesity-induced changes in oestrogen synthesis and metabolism on the development of PAH is unclear. To address this we investigated the effects of inhibiting oestrogen synthesis and metabolism on the development of pulmonary hypertension (PH) in male and female obese mice. We depleted endogenous oestrogen in leptin deficient (ob/ob) mice with the oestrogen inhibitor anastrozole (ANA) and determined the effects on the development of PH, plasma oestradiol and urinary 16α-hydroxyestrone (16αOHE1). Oestrogen metabolism through CYP1B1 was inhibited with 2,2',4,6'-tetramethoxystilbene (TMS). Ob/ob mice spontaneously develop PH, pulmonary vascular remodelling and increased reactive oxygen species (ROS) production in the lung; these effects were attenuated by ANA. Oestradiol levels were decreased in obese male mice; however, VAT CYP1B1 and 16αOHE1 levels were increased. TMS also attenuated PH in male ob/ob mice. Intra-thoracic fat from ob/ob mice and VAT conditioned media produce 16αOHE1 and can contribute to oxidative stress; effects that are attenuated by both ANA and TMS. Obesity can induce PH and changes in oestrogen metabolism, resulting in increased production of 16αOHE1 from VAT that contributes to oxidative stress. Oestrogen inhibitors are now in clinical trials for PAH. This study has translational consequences as it suggests that oestrogen inhibitors may be especially beneficial in treating obese individuals with PA
Sex-dependent influence of endogenous estrogen in pulmonary hypertension
Rationale: The incidence of pulmonary arterial hypertension (PAH) is greater in women suggesting estrogens may play a role in the disease pathogenesis. Experimentally, in males exogenously administered estrogen can protect against PH; however in models that display female susceptibility estrogens may play a causative role.
Objectives: To clarify the influence of endogenous estrogen and gender in PH and assess the therapeutic potential of a clinically available aromatase inhibitor.
Methods: We interrogated the effect of reduced endogenous estrogen in males and females using the aromatase inhibitor, anastrozole, in two models of PH; the hypoxic mouse and Sugen 5416/hypoxic rat. We also determined the effects of gender on pulmonary expression of aromatase in these models and in lungs from PAH patients.
Results: Anastrozole attenuated PH in both models studied, but only in females. To verify this effect was due to reduced estrogenic activity we confirmed that in hypoxic mice inhibition of estrogen receptor alpha also has a therapeutic effect specifically in females. Female rodent lung displays increased aromatase and decreased BMPR2 and Id1 expression compared to male. Anastrozole treatment reversed the impaired BMPR2 pathway in females. Increased aromatase expression was also detected in female human pulmonary artery smooth muscle cells compared to male.
Conclusions: The unique phenotype of female pulmonary arteries facilitates the therapeutic effects of anastrozole in experimental PH confirming a role for endogenous estrogen in the disease pathogenesis in females and suggests aromatase inhibitors may have therapeutic potential
A sex-specific microRNA-96/5HT1B Axis influences development of pulmonary hypertension
Rationale: Females are predisposed to pulmonary arterial hypertension (PAH); evidence suggests that serotonin, mutations in the bone morphogenetic protein receptor (BMPR) II gene, and estrogens influence development of PAH. The 5-hydroxytryptamine 1B receptor (5-HT1BR) mediates human pulmonary artery smooth muscle cell (hPASMC) proliferation.
Objectives: We aimed to determine whether selected microRNAs (miRNAs) expressed in PASMCs are influenced by sex, BMPR-II mutations, and estrogens, and contribute to PASMC proliferation in PAH.
Methods: Expression levels of miRNAs targeting genes related to PAH, estrogen, and serotonin were determined by quantitative RT-PCR in hPASMCs and mouse PASMCs harboring a heterozygous mutation in BMPR-II (BMPR-IIR899X+/− PASMCs). miRNA-96 targets 5-HT1BR and was selected for further investigation. miRNA target validation was confirmed by luciferase reporter assay. Precursor miRNA-96 was transfected into hPASMCs to examine effects on proliferation and 5-HT1BR expression. The effect of a miRNA-96 mimic on the development of hypoxic pulmonary hypertension in mice was also assessed.
Measurements and Main Results: miRNA-96 expression was reduced in BMPR-IIR899X+/− PASMCs from female mice and hPASMCs from female patients with PAH; this was associated with increased 5-HT1BR expression and serotonin-mediated proliferation. 5-HT1BR was validated as a target for miRNA-96. Transfection of precursor miRNA-96 into hPASMCs reduced 5-HT1BR expression and inhibited serotonin-induced proliferation. Restoration of miRNA-96 expression in pulmonary arteries in vivo via administration of an miRNA-96 mimic reduced the development of hypoxia-induced pulmonary hypertension in the mouse.
Conclusions: Increased 5-HT1BR expression may be a consequence of decreased miRNA-96 expression in female patient PASMCs, and this may contribute to the development of PAH
A pilot study to examine association of BMI with functional class and six minute walk distance in idiopathic and heritable PAH : possible association with estrogen metabolism
Abstract: The hypothesis that a relationship exists between body mass index (BMI), functional class, and 6 min walk distance (6MWD) in Group 1‐pulmonary arterial hypertension (PAH) was examined. Analysis of data from the UK National Cohort Study for heritable pulmonary arterial/idiopathic PAH suggests increased BMI is a predictor of worse functional class and shorter 6MWD; increased body‐weight in mice and man may be associated with increased estrogen metabolism
Dexfenfluramine and the oestrogen-metabolizing enzyme CYP1B1 in the development of pulmonary arterial hypertension
<p>Aims: Pulmonary arterial hypertension (PAH) occurs more frequently in women than men. Oestrogen and the oestrogen-metabolising enzyme cytochrome P450 1B1 (CYP1B1) play a role in the development of PAH. Anorectic drugs such as dexfenfluramine (Dfen) have been associated with the development of PAH. Dfen mediates PAH via a serotonergic mechanism and we have shown serotonin to up-regulate expression of CYP1B1 in human pulmonary artery smooth muscle cells (PASMCs). Thus here we assess the role of CYP1B1 in the development of Dfen-induced PAH.</p>
<p>Methods and results: Dfen (5 mg kg−1 day−1 PO for 28 days) increased right ventricular pressure and pulmonary vascular remodelling in female mice only. Mice dosed with Dfen showed increased whole lung expression of CYP1B1 and Dfen-induced PAH was ablated in CYP1B1−/− mice. In line with this, Dfen up-regulated expression of CYP1B1 in PASMCs from PAH patients (PAH-PASMCs) and Dfen-mediated proliferation of PAH-PASMCs was ablated by pharmacological inhibition of CYP1B1. Dfen increased expression of tryptophan hydroxylase 1 (Tph1; the rate-limiting enzyme in the synthesis of serotonin) in PAH-PASMCs and both Dfen-induced proliferation and Dfen-induced up-regulation of CYP1B1 were ablated by inhibition of Tph1. 17β-Oestradiol increased expression of both Tph1 and CYP1B1 in PAH-PASMCs, and Dfen and 17β-oestradiol had synergistic effects on proliferation of PAH-PASMCs. Finally, ovariectomy protected against Dfen-induced PAH in female mice.</p>
<p>Conclusion: CYP1B1 is critical in the development of Dfen-induced PAH in mice in vivo and proliferation of PAH-PASMCs in vitro. CYP1B1 may provide a novel therapeutic target for PAH.</p>
Soluble receptor for advanced glycation end products (sRAGE) attenuates haemodynamic changes to chronic hypoxia in the mouse
The calgranulin-like protein MTS1/S100A4 and the receptor for advanced glycation end-products (RAGE) have recently been implicated in mediating pulmonary arterial smooth muscle cell proliferation and vascular remodelling in experimental pulmonary arterial hypertension (PH). Here, the effects of RAGE antagonism upon 2 weeks of hypobaric hypoxia (10% O2)-induced PH in mice were assessed. Treatment with sRAGE was protective against hypobaric hypoxia-induced increases in right ventricular pressure but distal pulmonary vascular remodelling was unaffected. Intralobar pulmonary arteries from hypobaric hypoxic mice treated with sRAGE showed protection against a hypoxia-induced reduction in compliance. However, a combination of sRAGE and hypoxia also dramatically increased the force of contractions to KCl and 5-HT observed in these vessels. The acute addition of sRAGE to the organ bath produced a small, sustained contraction in intralobar pulmonary vessels and produced a synergistic enhancement of the maximal force of contraction in subsequent concentration–response curves to 5-HT. sRAGE had no effect on 5-HT-induced proliferation of Chinese hamster lung fibroblasts (CCL39), used since they have a similar pharmacological profile to mouse pulmonary fibroblasts but, surprisingly, produced a marked increase in hypoxia-induced proliferation. These data implicate RAGE as a modulator of both vasoreactivity and of proliferative processes in the response of the pulmonary circulation to chronic-hypoxia
Sphingosine Kinase 1 Induces Tolerance to Human Epidermal Growth Factor Receptor 2 and Prevents Formation of a Migratory Phenotype in Response to Sphingosine 1-Phosphate in Estrogen Receptor-Positive Breast Cancer Cells▿
We demonstrate here a new concept termed “oncogene tolerance” whereby human EGF receptor 2 (HER2) increases sphingosine kinase 1 (SK1) expression in estrogen receptor-positive (ER+) MCF-7 HER2 cells and SK1, in turn, limits HER2 expression in a negative-feedback manner. The HER2-dependent increase in SK1 expression also limits p21-activated protein kinase 1 (p65 PAK1) and extracellular signal regulated kinase 1/2 (ERK-1/2) signaling. Sphingosine 1-phosphate signaling via S1P3 is also altered in MCF-7 HER2 cells. In this regard, S1P binding to S1P3 induces a migratory phenotype via an SK1-dependent mechanism in ER+ MCF-7 Neo cells, which lack HER2. This involves the S1P stimulated accumulation of phosphorylated ERK-1/2 and actin into membrane ruffles/lamellipodia and migration. In contrast, S1P failed to promote redistribution of phosphorylated ERK-1/2 and actin into membrane ruffles/lamellipodia or migration of MCF-7 HER2 cells. However, a migratory phenotype in these cells could be induced in response to S1P when SK1 expression had been knocked down with a specific siRNA or when recombinant PAK1 was ectopically overexpressed. Thus, the HER2-dependent increase in SK1 expression functions to desensitize the S1P-induced formation of a migratory phenotype. This is correlated with improved prognosis in patients who have a low HER1-3/SK1 expression ratio in their ER+ breast cancer tumors compared to patients that have a high HER1-3/SK1 expression ratio