472 research outputs found

    Revising the age for the Baptistina asteroid family using WISE/NEOWISE data

    Get PDF
    We have used numerical routines to model the evolution of a simulated Baptistina family to constrain its age in light of new measurements of the diameters and albedos of family members from the Wide-field Infrared Survey Explorer. We also investigate the effect of varying the assumed physical and orbital parameters on the best-fitting age. We find that the physically allowed range of assumed values for the density and thermal conductivity induces a large uncertainty in the rate of evolution. When realistic uncertainties in the family members' physical parameters are taken into account we find the best-fitting age can fall anywhere in the range of 140-320 Myr. Without more information on the physical properties of the family members it is difficult to place a more firm constraint on Baptistina's age.Comment: 27 pages, 16 figures, accepted to Ap

    A revised asteroid polarization-albedo relationship using WISE/NEOWISE data

    Get PDF
    We present a reanalysis of the relationship between asteroid albedo and polarization properties using the albedos derived from the Wide-field Infrared Survey Explorer. We find that the function that best describes this relation is a three-dimensional linear fit in the space of log(albedo)-log(polarization slope)-log(minimum polarization). When projected to two dimensions the parameters of the fit are consistent with those found in previous work. We also define p* as the quantity of maximal polarization variation when compared with albedo and present the best fitting albedo-p* relation. Some asteroid taxonomic types stand out in this three-dimensional space, notably the E, B, and M Tholen types, while others cluster in clumps coincident with the S- and C-complex bodies. We note that both low albedo and small (D<30 km) asteroids are under-represented in the polarimetric sample, and we encourage future polarimetric surveys to focus on these bodies.Comment: 16 pages, Accepted to Ap

    Using Narrow Band Photometry to Detect Young Brown Dwarfs in IC348

    Full text link
    We report the discovery of a population of young brown dwarf candidates in the open star cluster IC348 and the development of a new spectroscopic classification technique using narrow band photometry. Observations were made using FLITECAM, the First Light Camera for SOFIA, at the 3-m Shane Telescope at Lick Observatory. FLITECAM is a new 1-5 micron camera with an 8 arcmin field of view. Custom narrow band filters were developed to detect absorption features of water vapor (at 1.495 microns) and methane (at 1.66 microns) characteristic of brown dwarfs. These filters enable spectral classification of stars and brown dwarfs without spectroscopy. FLITECAM's narrow and broadband photometry was verified by examining the color-color and color-magnitude characteristics of stars whose spectral type and reddening was known from previous surveys. Using our narrow band filter photometry method, it was possible to identify an object measured with a signal-to-noise ratio of 20 or better to within +/-3 spectral class subtypes for late-type stars. With this technique, very deep images of the central region of IC348 (H ~ 20.0) have identified 18 sources as possible L or T dwarf candidates. Out of these 18, we expect that between 3 - 6 of these objects are statistically likely to be background stars, with the remainder being true low-mass members of the cluster. If confirmed as cluster members then these are very low-mass objects (~5 Mjupiter). We also describe how two additional narrow band filters can improve the contrast between M, L, and T dwarfs as well as provide a means to determine the reddening of an individual object.Comment: 43 pages, 17 figures. Accepted for publication in the Astrophysical Journal 27 June 200

    Characterization of Active Main Belt Object P/2012 F5 (Gibbs): A Possible Impacted Asteroid

    Get PDF
    In this work we characterize the recently discovered active main belt object P/2012 F5 (Gibbs), which was discovered with a dust trail > 7' in length in the outer main belt, 7 months prior to aphelion. We use optical imaging obtained on UT 2012 March 27 to analyze the central condensation and the long trail. We find nuclear B-band and R-band apparent magnitudes of 20.96 and 19.93 mag, respectively, which give an upper limit on the radius of the nucleus of 2.1 km. The geometric cross-section of material in the trail was ~ 4 x 10^8 m^2, corresponding to a dust mass of ~ 5 x 10^7 kg. Analysis of infrared images taken by the Wide-Field Infrared Survey Explorer in September 2010 reveals that the object was below the detection limit, suggesting that it was less active than it was during 2012, or possibly inactive, just 6 months after it passed through perihelion. We set a 1-sigma upper limit on its radius during this time of 2.9 km. P/2012 F5 (Gibbs) is dynamically stable in the outer main belt on timescales of ~ 1 Gyr, pointing towards an asteroidal origin. We find that the morphology of the ejected dust is consistent with it being produced by a single event that occurred on UT 2011 July 7 ±\pm 20 days, possibly as the result of a collision with a small impactor.Comment: 29 pages, 5 figures. Accepted for publication in Ap

    WISE/NEOWISE Observations of the Jovian Trojans: Preliminary Results

    Get PDF
    We present the preliminary analysis of over 1739 known and 349 candidate Jovian Trojans observed by the NEOWISE component of the Wide-field Infrared Survey Explorer (WISE). With this survey the available diameters, albedos and beaming parameters for the Jovian Trojans have been increased by more than an order of magnitude compared to previous surveys. We find that the Jovian Trojan population is very homogenous for sizes larger than 10\sim10km (close to the detection limit of WISE for these objects). The observed sample consists almost exclusively of low albedo objects, having a mean albedo value of 0.07±0.030.07\pm0.03. The beaming parameter was also derived for a large fraction of the observed sample, and it is also very homogenous with an observed mean value of 0.88±0.130.88\pm0.13. Preliminary debiasing of the survey shows our observed sample is consistent with the leading cloud containing more objects than the trailing cloud. We estimate the fraction to be N(leading)/N(trailing) 1.4±0.2\sim 1.4 \pm 0.2, lower than the 1.6±0.11.6 \pm 0.1 value derived by others.Comment: Accepted for publication in Astrophysical Journal. Electronic table will be available at the publishers websit

    Lingering grains of truth around comet 17P/Holmes

    Get PDF
    Comet 17P/Holmes underwent a massive outburst in 2007 Oct., brightening by a factor of almost a million in under 48 hours. We used infrared images taken by the Wide-Field Survey Explorer mission to characterize the comet as it appeared at a heliocentric distance of 5.1 AU almost 3 years after the outburst. The comet appeared to be active with a coma and dust trail along the orbital plane. We constrained the diameter, albedo, and beaming parameter of the nucleus to 4.135 ±\pm 0.610 km, 0.03 ±\pm 0.01 and 1.03 ±\pm 0.21, respectively. The properties of the nucleus are consistent with those of other Jupiter Family comets. The best-fit temperature of the coma was 134 ±\pm 11 K, slightly higher than the blackbody temperature at that heliocentric distance. Using Finson-Probstein modeling we found that the morphology of the trail was consistent with ejection during the 2007 outburst and was made up of dust grains between 250 μ\mum and a few cm in radius. The trail mass was \sim 1.2 - 5.3 ×\times 1010^{10} kg.Comment: Accepted to ApJ. 2 tables, 4 figure

    NEOWISE observations of comet C/2013 A1 (Siding Spring) as it approaches Mars

    Get PDF
    The Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) mission observed comet C/2013 A1 (Siding Spring) three times at 3.4 {\mu}m and 4.6 {\mu}m as the comet approached Mars in 2014. The comet is an extremely interesting target since its close approach to Mars in late 2014 will be observed by various spacecraft in-situ. The observations were taken in 2014 Jan., Jul. and Sep. when the comet was at heliocentric distances of 3.82 AU, 1.88 AU, and 1.48 AU. The level of activity increased significantly between the Jan. and Jul. visits but then decreased by the time of the observations in Sep., approximately 4 weeks prior to its close approach to Mars. In this work we calculate Af\r{ho} values, and CO/CO2 production rates.Comment: 9 pages, 3 figures, accepted by Astrophysical Journal Letter

    Asteroid family identification using the Hierarchical Clustering Method and WISE/NEOWISE physical properties

    Full text link
    Using albedos from WISE/NEOWISE to separate distinct albedo groups within the Main Belt asteroids, we apply the Hierarchical Clustering Method to these subpopulations and identify dynamically associated clusters of asteroids. While this survey is limited to the ~35% of known Main Belt asteroids that were detected by NEOWISE, we present the families linked from these objects as higher confidence associations than can be obtained from dynamical linking alone. We find that over one-third of the observed population of the Main Belt is represented in the high-confidence cores of dynamical families. The albedo distribution of family members differs significantly from the albedo distribution of background objects in the same region of the Main Belt, however interpretation of this effect is complicated by the incomplete identification of lower-confidence family members. In total we link 38,298 asteroids into 76 distinct families. This work represents a critical step necessary to debias the albedo and size distributions of asteroids in the Main Belt and understand the formation and history of small bodies in our Solar system.Comment: Accepted to ApJ. Full version of Table 3 to be published electronically in Ap
    corecore