1,261 research outputs found

    Full Sky Study of Diffuse Galactic Emission at Decimeter Wavelengths

    Full text link
    A detailed knowledge of the Galactic radio continuum is of high interest for studies of the dynamics and structure of the Galaxy as well as for the problem of foreground removal in Cosmic Microwave Background measurements. In this work we present a full-sky study of the diffuse Galactic emission at frequencies of few GHz, where synchrotron radiation is by far the dominant component. We perform a detailed combined analysis of the extended surveys at 408, 1420 and 2326 MHz (by Haslam et al. 1982, Reich 1982, Reich & Reich, 1986 and Jonas et al. 1998, respectively). Using the technique applied by Schlegel et al. (1998) to the IRAS data, we produce destriped versions of the three maps. This allows us to construct a nearly-full-sky map of the spectral index and of the normalization factor with sub-degree angular resolution. The resulting distribution of the spectral indices has an average of beta = 2.695 and dispersion sigma_{beta} = 0.120. This is representative for the Galactic diffuse synchrotron emission, with only minor effects from free-free emission and point sources.Comment: 10 pages, 16 jpeg figures, accepted to Astronomy & Astrophysics, Comments and figure adde

    The Planck-LFI instrument: analysis of the 1/f noise and implications for the scanning strategy

    Get PDF
    We study the impact of the 1/f noise on the PLANCK Low Frequency Instrument (LFI) osbervations (Mandolesi et al 1998) and describe a simple method for removing striping effects from the maps for a number of different scanning stategies. A configuration with an angle between telescope optical axis and spin-axis just less than 90 degrees (namely 85 degress) shows good destriping efficiency for all receivers in the focal plane, with residual noise degradation < 1-2 %. In this configuration, the full sky coverage can be achieved for each channel separately with a 5 degrees spin-axis precession to maintain a constant solar aspect angle.Comment: submitted to Astronomy and Astrophysics, 12 pages, 15 PostSript figure

    Large area Si low-temperature light detectors with Neganov-Luke effect

    Get PDF
    Next generation calorimetric experiments for the search of rare events rely on the detection of tiny amounts of light (of the order of 20 optical photons) to discriminate and reduce background sources and improve sensitivity. Calorimetric detectors are the simplest solution for photon detection at cryogenic (mK) temperatures. The development of silicon based light detectors with enhanced performance thanks to the use of the Neganov-Luke effect is described. The aim of this research line is the production of high performance detectors with industrial-grade reproducibility and reliability.Comment: 4 pages, 2 figure

    Development of microwave superconducting microresonators for neutrino mass measurement in the HOLMES framework

    Full text link
    The European Research Council has recently funded HOLMES, a project with the aim of performing a calorimetric measurement of the electron neutrino mass measuring the energy released in the electron capture decay of 163Ho. The baseline for HOLMES are microcalorimeters coupled to Transition Edge Sensors (TESs) read out with rf-SQUIDs, for microwave multiplexing purposes. A promising alternative solution is based on superconducting microwave resonators, that have undergone rapid development in the last decade. These detectors, called Microwave Kinetic Inductance Detectors (MKIDs), are inherently multiplexed in the frequency domain and suitable for even larger-scale pixel arrays, with theoretical high energy resolution and fast response. The aim of our activity is to develop arrays of microresonator detectors for X-ray spectroscopy and suitable for the calorimetric measurement of the energy spectra of 163Ho. Superconductive multilayer films composed by a sequence of pure Titanium and stoichiometric TiN layers show many ideal properties for MKIDs, such as low loss, large sheet resistance, large kinetic inductance, and tunable critical temperature TcT_c. We developed Ti/TiN multilayer microresonators with TcT_c within the range from 70 mK to 4.5 K and with good uniformity. In this contribution we present the design solutions adopted, the fabrication processes and the characterization results

    On the performance of Planck-like telescopes versus mirror aperture

    Get PDF
    Future space mission like MAP and PLANCK will be able to shade new light on our knowledge of the Universe thanks to their unprecedented angular resolution and sensitivity. The far sub-degree angular resolution is obtained coupling usual detectors, radiometers and/or bolometers, to an optical system, namely a telescope. The wealth of cosmological information is encoded at high l values (~1000) which can be reached with resolution of about 10′. Distortions of the main beam resulting from the current focal plane arrangement and the optical design of the PLANCK satellite will degrade angular resolution and sensitivity per resolution element possibly compromising the final results. The detailed design of the PLANCK telescope is continuously changing with the aim of optimizing its performance. In the present work we present a methodological study on the relation between telescope optical design, focal plane arrangement and optical performances, focussing on the dependence of angular resolution on primary mirror aperture. Different independent approaches have been developed to quantify the impact of main beam distortions on cosmic microwave background (CMB) science yielding nearly the same results. The so-called PHASE-A telescope is unacceptable with respect mission main goals. Larger telescopes (namely with effective aperture ≳ 1.5 m) are therefore preferable. This paper is based on the PLANCK LFI activities.

    An iterative destriping technique for diffuse background polarization data

    Get PDF
    We describe a simple but effective iterative procedure specifically designed to destripe Q and U Stokes parameter data as those collected by the SPOrt experiment onboard the International Space Station (ISS). The method is general enough to be useful for other experiments, both in polarization and total intensity. The only requirement for the algorithm to work properly is that the receiver knee frequency must be lower than the signal modulation frequency, corresponding in our case to the ISS orbit period. Detailed performances of the technique are presented in the context of the SPOrt experiment, both in terms of added rms noise and residual correlated noise.Comment: Accepted for publication by A&A (8 pages, 6 figures

    Searches for axioelectric effect of solar axions with BGO-scintillator and BGO-bolometer detectors

    Full text link
    A search for axioelectric absorption of 5.5 MeV solar axions produced in the p+d→3He+γ (5.5 MeV)p + d \rightarrow {^3\rm{He}}+\gamma~(5.5~ \rm{MeV}) reaction has been performed with a BGO detectors. A model-independent limit on the product of axion-nucleon gAN3g_{AN}^3 and axion-electron gAeg_{Ae} coupling constants has been obtained: ∣gAe×gAN3∣<1.9×10−10| g_{Ae}\times g_{AN}^3|< 1.9\times 10^{-10} for 90\% C.L..Comment: 5 pages, 3 figures, Proceedings of the 10th Patras Workshop on Axions, WIMPs and WISP 29 June - 4 July 2014, CERN, Geneva, Switzerlan

    Transformer coupling and its modelling for the flux-ramp modulation of rf-SQUIDs

    Full text link
    Microwave frequency domain multiplexing is a suitable technique to read out a large number of detector channels using only a few connecting lines. In the HOLMES experiment this is based on inductively coupled rf-SQUIDs (Superconducting QUantum Interference Devices) fed by TES (Transition Edge Sensors). Biasing of the whole rf-SQUID chain is provided with a single transmission line by means of the recently introduced flux-ramp modulation technique, a sawtooth signal which allows signal reconstruction while operating the rf-SQUIDs in open loop condition. Due to the crucial role of the sawtooth signal, it is very important that it does not suffer from ground loop disturbances and EMI. Introducing a transformer between the biasing source and the SQUIDs is very effective in suppressing disturbances. The sawtooth signal has slow and fast components, and the period can vary between a few kHz up to MHz depending on the TES signal and SQUID characteristics. A transformer able to face such a broad range of conditions must have very stringent characteristics and needs to be custom designed. Our solution exploits standard commercial, and inexpensive, transformers for LAN networks used in a suitable combination. A model that allows to take care of the low as well as of the high frequency operating range has been developed
    • …
    corecore