1,892 research outputs found

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER

    High prevalence of Sarcocystis calchasi in racing pigeon flocks in Germany

    Get PDF
    The apicomplexan parasite Sarcocystis calchasi (Coccidia: Eimeriorina: Sarcocystidae) is the causative agent of Pigeon Protozoal Encephalitis (PPE) and infects birds of the orders Columbiformes, Piciformes and Psittaciformes. Accipiter hawks (Aves: Accipitriformes) are the definitive hosts of this parasite. Infections of S. calchasi have been detected in Germany, the United States and Japan. However, the prevalence of the parasite in racing pigeon flocks has not yet been determined. Here, the first cross-sectional prevalence study to investigate S. calchasi in pigeon racing flocks was accomplished including 245 pigeon flocks across Germany. A total of 1,225 muscle biopsies, were taken between 2012 and 2016 and examined by semi-nested PCR for S. calchasi DNA targeting the ITS gene. Additionally, a questionnaire on construction of the aviary as well as management and health status of the flock was conducted. In 27.8% (95% C.I. = 22.3–33.8%) of the flocks, S. calchasi DNA was detected in at least one pigeon. Positive flocks were located in 15 out of 16 federal states. A significant increase of infected racing pigeons was seen in spring. Half-covered or open aviary constructions showed a trend of increase of the prevalence rate, while anti-coccidian treatment and acidified drinking water had no effects. The high prevalence and the geographical distribution of S. calchasi suggest a long-standing occurrence of the parasite in the German racing pigeon population. For pigeons presented with neurological signs or other symptoms possibly related to PPE, S. calchasi should be considered as a potential cause throughout Germany

    SIMULATION OF THE FLIGHT DISTANCES OF JAVELINS BASED ON A NEURAL NETWORK APPROACH

    Get PDF
    INTRODUCTION: The flight distances of javelins are determined by the release parameters as well as by the forces acting on the javelin during flight. The flight phase of the javelin has been under investigation by many researchers using engineering approaches to model the flight phase. The objective is to allow an optimization of the release parameters for maximizing the flight distance. The measurement of release parameters as well as wind influence is not very precise. This means that the models are based on already distorted data. Artificial neural networks (NNs, Haykin 1994) are powerful information processing tools that allow to construct a input-output model of a problem by learning from examples. They are able to generalize , i.e. to produce reasonable outputs for inputs that have not been encountered during learning. NNs handle imprecise data well and could be suitable for modeling the flight distance of javelins as a result of the release parameters. METHODS: Release parameters have been measured using three dimensional film and video analysis. Relevant parameters were determined: the angle of release, the angle of attack (seen from the side), the angle of side attack (seen from behind) as well as the velocity of release. The overall flight was measured as the distance between the throwing line and the athlete’s hand at the point of release plus the distance between the line and the point of touch down of the javelin. Other parameters such as javelin brand, wind speed, etc., were not considered in the model. Multi-Layer-Perceptron Neural Networks (MLPs) were used to construct a model with the release parameters as inputs and the overall distance as output. RESULTS: Several setups were used for the training of the MLPs and 40 sets of release parameters were processed. We used 37 sets for the training of the MLPs and 3 sets were kept for examining the MLPs’ generalization performance (crossvalidation). This was repeated with randomly selected sets for training and crossvalidation. Predictions of the total flight distance using the release parameters were exact up to 5 percent of the overall distance for the cross validation sets. CONCLUSIONS: The MLP simulation of the flight distance is a suitable instrument even though it uses only a small number of parameters. This can be helpful for coaching and provides an alternative to other models. Using more data sets may improve the quality of prediction, and further work will include recording more data sets as well as studies on optimal javelin release parameters. REFERENCES: Haykin, S. (1994). Neural Networks. Englewood Cliffs: Macmillan Publishing Company

    A Fuzzy Logic Reconfiguration Engine for Symmetric Chip Multiprocessors

    Get PDF
    Recent developments in reconfigurable multiprocessor system on chip (MPSoC) have offered system designers a great amount of flexibility to exploit task concurrency with higher throughput and less energy consumption. This paper presents a novel fuzzy logic reconfiguration engine (FLRE) for coarse grain MPSoC reconfiguration that facilitates to identify an optimum balance between power and performance of the system. The FLRE is composed on two levels of abstraction layers. The system selects an optimal configuration of Level 1 / Level 2 cache size and Associativity, processor operating frequency and voltage, the number of cores based on miss rate, and energy and throughput information of the system both at core and SoC level. An 8-core symmetric chip multiprocessor has been used to evaluate the proposed scheme. The results show an overall decrease of energy consumption with not more than 30% decrease in the throughput

    Cognitive assisted living ambient system: a survey

    Get PDF
    The demographic change towards an aging population is creating a significant impact and introducing drastic challenges to our society. We therefore need to find ways to assist older people to stay independently and prevent social isolation of these population. Information and Communication Technologies (ICT) provide various solutions to help older adults to improve their quality of life, stay healthier, and live independently for a time. Ambient Assisted Living (AAL) is a field to investigate innovative technologies to provide assistance as well as healthcare and rehabilitation to impaired seniors. The paper provides a review of research background and technologies of AAL

    A Paradigm Shift: Detecting Human Rights Violations Through Web Images

    Get PDF
    The growing presence of devices carrying digital cameras, such as mobile phones and tablets, combined with ever improving internet networks have enabled ordinary citizens, victims of human rights abuse, and participants in armed conflicts, protests, and disaster situations to capture and share via social media networks images and videos of specific events. This paper discusses the potential of images in human rights context including the opportunities and challenges they present. This study demonstrates that real-world images have the capacity to contribute complementary data to operational human rights monitoring efforts when combined with novel computer vision approaches. The analysis is concluded by arguing that if images are to be used effectively to detect and identify human rights violations by rights advocates, greater attention to gathering task-specific visual concepts from large-scale web images is required
    • …
    corecore