21,766 research outputs found
Low-temperature quantum fluctuations in overdamped ratchets
At low temperatures and strong friction the time evolution of the density
distribution in position follows a quantum Smoluchowski equation. Recently,
also higher-order contributions of quantum fluctuations to drift and diffusion
coefficients have been systematically derived. As a non-trivial situation to
reveal the impact of subleading quantum corrections and to demonstrate
convergence properties of the perturbation series, directed transport in
ratchets is studied. It is shown that the perturbation series typically has a
non-monotonous behavior. Depending on symmetry properties higher order
contributions may even compensate current reversals induced by leading quantum
fluctuations. This analysis demonstrates how to consistently treat the dynamics
of overdamped quantum systems at low temperatures also in numerical
applications.Comment: 5 pages, 3 figure
Alternative Buffer-Layers for the Growth of SrBi2Ta2O9 on Silicon
In this work we investigate the influence of the use of YSZ and CeO2/YSZ as
insulators for Metal- Ferroelectric-Insulator-Semiconductor (MFIS) structures
made with SrBi2Ta2O9 (SBT). We show that by using YSZ only the a-axis oriented
Pyrochlore phase could be obtained. On the other hand the use of a CeO2/YSZ
double-buffer layer gave a c-axis oriented SBT with no amorphous SiO2 inter-
diffusion layer. The characteristics of MFIS diodes were greatly improved by
the use of the double buffer. Using the same deposition conditions the memory
window could be increased from 0.3 V to 0.9 V. From the piezoelectric response,
nano-meter scale ferroelectric domains could be clearly identified in SBT thin
films.Comment: 5 pages, 9 figures, 13 refernece
Chains of large gaps between primes
Let denote the -th prime, and for any and sufficiently
large , define the quantity which measures the occurrence of
chains of consecutive large gaps of primes. Recently, with Green and
Konyagin, the authors showed that for sufficiently large . In this
note, we combine the arguments in that paper with the Maier matrix method to
show that for any fixed and sufficiently large . The
implied constant is effective and independent of .Comment: 16 pages, no figure
Large tunable photonic band gaps in nanostructured doped semiconductors
A plasmonic nanostructure conceived with periodic layers of a doped
semiconductor and passive semiconductor is shown to generate spontaneously
surface plasmon polaritons thanks to its periodic nature. The nanostructure is
demonstrated to behave as an effective material modeled by a simple dielectric
function of ionic-crystal type, and possesses a fully tunable photonic band
gap, with widths exceeding 50%, in the region extending from mid-infra-red to
Tera-Hertz.Comment: 6 pages, 4 figures, publishe
Detection of pterins and enzymatic activities of GTP-cyclohydrolase I and sepiapterin reductase in Neurospora crassa and Phycomyces blakesleeanus
The best known pterin in Neurospora crassa is molybdopterin, which is a constituent of the flavohemoenzyme nitrate reductase and participates in blue-light promoted conidiation (Klemm and Ninnemann 1979 Photochem
Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles
Linear arrays of very small Ag nanoparticles (diameter ~10 nm, spacing 0–4 nm) were fabricated in sodalime glass using an ion irradiation technique. Optical extinction spectroscopy of the arrays reveals a large polarization-dependent splitting of the collective plasmon extinction band. Depending on the preparation condition, a redshift of the longitudinal resonance as large as 1.5 eV is observed. Simulations of the three-dimensional electromagnetic field evolution are used to determine the resonance energy of idealized nanoparticle arrays with different interparticle spacings and array lengths. Using these data, the experimentally observed redshift is attributed to collective plasmon coupling in touching particles and/or in long arrays of strongly coupled particles. The simulations also indicate that for closely coupled nanoparticles (1–2 nm spacing) the electromagnetic field is concentrated in nanoscale regions (10 dB radius: 3 nm) between the particles, with a 5000-fold local field intensity enhancement. In arrays of 1-nm-spaced particles the dipolar particle interaction extends to over 10 particles, while for larger spacing the interaction length decreases. Spatial images of the local field distribution in 12-particle arrays of touching particles reveal a particlelike coupled mode with a resonance at 1.8 eV and a wirelike mode at 0.4 eV
d-wave Superconductivity in the Hubbard Model
The superconducting instabilities of the doped repulsive 2D Hubbard model are
studied in the intermediate to strong coupling regime with help of the
Dynamical Cluster Approximation (DCA). To solve the effective cluster problem
we employ an extended Non Crossing Approximation (NCA), which allows for a
transition to the broken symmetry state. At sufficiently low temperatures we
find stable d-wave solutions with off-diagonal long range order. The maximal
occurs for a doping and the doping
dependence of the transition temperatures agrees well with the generic
high- phase diagram.Comment: 5 pages, 5 figure
Oxygen Gas Abundances at 0.4<z<1.5: Implications for the Chemical Evolution History of Galaxies
We report VLT-ISAAC and Keck-NIRSPEC near-infrared spectroscopy for a sample
of 30 0.47<z<0.92 CFRS galaxies and five [OII]-selected, M_B,AB<-21.5, z~1.4
galaxies. We have measured Halpha and [NII] line fluxes for the CFRS galaxies
which have [OII], Hbeta and [OIII] line fluxes available from optical
spectroscopy. For the z~1.4 objects we measured Hbeta and [OIII] emission line
fluxes from J-band spectra, and Halpha line fluxes plus upper limits for [NII]
fluxes from H-band spectra. We derive the extinction and oxygen abundances for
the sample using a method based on a set of ionisation parameter and oxygen
abundance diagnostics, simultaneously fitting the [OII], Hbeta, [OIII], Halpha
and [NII] line fluxes. Our most salient conclusions are: a) the source of gas
ionisation in the 30 CFRS and in all z~1.4 galaxies is not due to AGN activity;
b) about one third of the 0.47<z<0.92 CFRS galaxies in our sample have
substantially lower metallicities than local galaxies with similar luminosities
and star formation rates; c) comparison with a chemical evolution model
indicates that these low metallicity galaxies are unlikely to be the
progenitors of metal-poor dwarf galaxies at z~0, but more likely the
progenitors of massive spirals; d) the z~1.4 galaxies are characterized by the
high [OIII]/[OII] line ratios, low extinction and low metallicity that are
typical of lower luminosity CADIS galaxies at 0.4<z<0.7, and of more luminous
Lyman Break Galaxies at z~3.1, but not seen in CFRS galaxies at 0.4<z<1.0; e)
the properties of the z~1.4 galaxies suggest that the period of rapid chemical
evolution takes place progressively in lower mass systems as the universe ages,
and thus provides further support for a downsizing picture of galaxy formation,
at least from z~1.4 to today.Comment: Proceedings contribution for "The Fabulous Destiny of Galaxies;
Bridging Past and Present", Marseille, 200
Spin fluctuations and superconductivity in a 3D tight-binding model for BaFe2As2
Despite the wealth of experimental data on the Fe-pnictide compounds of the
KFe2As2-type, K = Ba, Ca, or Sr, the main theoretical work based on
multiorbital tight-binding models has been restricted so far to the study of
the related 1111 compounds. This can be ascribed to the more three dimensional
electronic structure found by ab initio calculations for the 122 materials,
making this system less amenable to model development. In addition, the more
complicated Brillouin zone (BZ) of the body-centered tetragonal symmetry does
not allow a straightforward unfolding of the electronic band structure into an
effective 1Fe/unit cell BZ. Here we present an effective 5-orbital
tight-binding fit of the full DFT band structure for BaFeAs including the kz
dispersions. We compare the 5-orbital spin fluctuation model to one previously
studied for LaOFeAs and calculate the RPA enhanced susceptibility. Using the
fluctuation exchange approximation to determine the leading pairing
instability, we then examine the differences between a strictly two dimensional
model calculation over a single kz cut of the BZ and a completely three
dimensional approach. We find pairing states quite similar to the 1111
materials, with generic quasi-isotropic pairing on the hole sheets and nodal
states on the electron sheets at kz = 0 which however are gapped as the system
is hole doped. On the other hand, a substantial kz dependence of the order
parameter remains, with most of the pairing strength deriving from processes
near kz = pi. These states exhibit a tendency for an enhanced anisotropy on the
hole sheets and a reduced anisotropy on the electron sheets near the top of the
BZ.Comment: 12 pages, 15 figure
Noise-Activated Escape from a Sloshing Potential Well
We treat the noise-activated escape from a one-dimensional potential well of
an overdamped particle, to which a periodic force of fixed frequency is
applied. We determine the boundary layer behavior, and the physically relevant
length scales, near the oscillating well top. We show how stochastic behavior
near the well top generalizes the behavior first determined by Kramers, in the
case without forcing. Both the case when the forcing dies away in the weak
noise limit, and the case when it does not, are examined. We also discuss the
relevance of various scaling regimes to recent optical trap experiments.Comment: 9 pages, no figures, REVTeX, expanded versio
- …