21,766 research outputs found

    Low-temperature quantum fluctuations in overdamped ratchets

    Full text link
    At low temperatures and strong friction the time evolution of the density distribution in position follows a quantum Smoluchowski equation. Recently, also higher-order contributions of quantum fluctuations to drift and diffusion coefficients have been systematically derived. As a non-trivial situation to reveal the impact of subleading quantum corrections and to demonstrate convergence properties of the perturbation series, directed transport in ratchets is studied. It is shown that the perturbation series typically has a non-monotonous behavior. Depending on symmetry properties higher order contributions may even compensate current reversals induced by leading quantum fluctuations. This analysis demonstrates how to consistently treat the dynamics of overdamped quantum systems at low temperatures also in numerical applications.Comment: 5 pages, 3 figure

    Alternative Buffer-Layers for the Growth of SrBi2Ta2O9 on Silicon

    Full text link
    In this work we investigate the influence of the use of YSZ and CeO2/YSZ as insulators for Metal- Ferroelectric-Insulator-Semiconductor (MFIS) structures made with SrBi2Ta2O9 (SBT). We show that by using YSZ only the a-axis oriented Pyrochlore phase could be obtained. On the other hand the use of a CeO2/YSZ double-buffer layer gave a c-axis oriented SBT with no amorphous SiO2 inter- diffusion layer. The characteristics of MFIS diodes were greatly improved by the use of the double buffer. Using the same deposition conditions the memory window could be increased from 0.3 V to 0.9 V. From the piezoelectric response, nano-meter scale ferroelectric domains could be clearly identified in SBT thin films.Comment: 5 pages, 9 figures, 13 refernece

    Chains of large gaps between primes

    Full text link
    Let pnp_n denote the nn-th prime, and for any k1k \geq 1 and sufficiently large XX, define the quantity Gk(X):=maxpn+kXmin(pn+1pn,,pn+kpn+k1), G_k(X) := \max_{p_{n+k} \leq X} \min( p_{n+1}-p_n, \dots, p_{n+k}-p_{n+k-1} ), which measures the occurrence of chains of kk consecutive large gaps of primes. Recently, with Green and Konyagin, the authors showed that G1(X)logXloglogXloglogloglogXlogloglogX G_1(X) \gg \frac{\log X \log \log X\log\log\log\log X}{\log \log \log X} for sufficiently large XX. In this note, we combine the arguments in that paper with the Maier matrix method to show that Gk(X)1k2logXloglogXloglogloglogXlogloglogX G_k(X) \gg \frac{1}{k^2} \frac{\log X \log \log X\log\log\log\log X}{\log \log \log X} for any fixed kk and sufficiently large XX. The implied constant is effective and independent of kk.Comment: 16 pages, no figure

    Large tunable photonic band gaps in nanostructured doped semiconductors

    Full text link
    A plasmonic nanostructure conceived with periodic layers of a doped semiconductor and passive semiconductor is shown to generate spontaneously surface plasmon polaritons thanks to its periodic nature. The nanostructure is demonstrated to behave as an effective material modeled by a simple dielectric function of ionic-crystal type, and possesses a fully tunable photonic band gap, with widths exceeding 50%, in the region extending from mid-infra-red to Tera-Hertz.Comment: 6 pages, 4 figures, publishe

    Detection of pterins and enzymatic activities of GTP-cyclohydrolase I and sepiapterin reductase in Neurospora crassa and Phycomyces blakesleeanus

    Get PDF
    The best known pterin in Neurospora crassa is molybdopterin, which is a constituent of the flavohemoenzyme nitrate reductase and participates in blue-light promoted conidiation (Klemm and Ninnemann 1979 Photochem

    Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles

    Get PDF
    Linear arrays of very small Ag nanoparticles (diameter ~10 nm, spacing 0–4 nm) were fabricated in sodalime glass using an ion irradiation technique. Optical extinction spectroscopy of the arrays reveals a large polarization-dependent splitting of the collective plasmon extinction band. Depending on the preparation condition, a redshift of the longitudinal resonance as large as 1.5 eV is observed. Simulations of the three-dimensional electromagnetic field evolution are used to determine the resonance energy of idealized nanoparticle arrays with different interparticle spacings and array lengths. Using these data, the experimentally observed redshift is attributed to collective plasmon coupling in touching particles and/or in long arrays of strongly coupled particles. The simulations also indicate that for closely coupled nanoparticles (1–2 nm spacing) the electromagnetic field is concentrated in nanoscale regions (10 dB radius: 3 nm) between the particles, with a 5000-fold local field intensity enhancement. In arrays of 1-nm-spaced particles the dipolar particle interaction extends to over 10 particles, while for larger spacing the interaction length decreases. Spatial images of the local field distribution in 12-particle arrays of touching particles reveal a particlelike coupled mode with a resonance at 1.8 eV and a wirelike mode at 0.4 eV

    d-wave Superconductivity in the Hubbard Model

    Full text link
    The superconducting instabilities of the doped repulsive 2D Hubbard model are studied in the intermediate to strong coupling regime with help of the Dynamical Cluster Approximation (DCA). To solve the effective cluster problem we employ an extended Non Crossing Approximation (NCA), which allows for a transition to the broken symmetry state. At sufficiently low temperatures we find stable d-wave solutions with off-diagonal long range order. The maximal Tc150KT_c\approx 150K occurs for a doping δ20\delta\approx 20% and the doping dependence of the transition temperatures agrees well with the generic high-TcT_c phase diagram.Comment: 5 pages, 5 figure

    Oxygen Gas Abundances at 0.4<z<1.5: Implications for the Chemical Evolution History of Galaxies

    Full text link
    We report VLT-ISAAC and Keck-NIRSPEC near-infrared spectroscopy for a sample of 30 0.47<z<0.92 CFRS galaxies and five [OII]-selected, M_B,AB<-21.5, z~1.4 galaxies. We have measured Halpha and [NII] line fluxes for the CFRS galaxies which have [OII], Hbeta and [OIII] line fluxes available from optical spectroscopy. For the z~1.4 objects we measured Hbeta and [OIII] emission line fluxes from J-band spectra, and Halpha line fluxes plus upper limits for [NII] fluxes from H-band spectra. We derive the extinction and oxygen abundances for the sample using a method based on a set of ionisation parameter and oxygen abundance diagnostics, simultaneously fitting the [OII], Hbeta, [OIII], Halpha and [NII] line fluxes. Our most salient conclusions are: a) the source of gas ionisation in the 30 CFRS and in all z~1.4 galaxies is not due to AGN activity; b) about one third of the 0.47<z<0.92 CFRS galaxies in our sample have substantially lower metallicities than local galaxies with similar luminosities and star formation rates; c) comparison with a chemical evolution model indicates that these low metallicity galaxies are unlikely to be the progenitors of metal-poor dwarf galaxies at z~0, but more likely the progenitors of massive spirals; d) the z~1.4 galaxies are characterized by the high [OIII]/[OII] line ratios, low extinction and low metallicity that are typical of lower luminosity CADIS galaxies at 0.4<z<0.7, and of more luminous Lyman Break Galaxies at z~3.1, but not seen in CFRS galaxies at 0.4<z<1.0; e) the properties of the z~1.4 galaxies suggest that the period of rapid chemical evolution takes place progressively in lower mass systems as the universe ages, and thus provides further support for a downsizing picture of galaxy formation, at least from z~1.4 to today.Comment: Proceedings contribution for "The Fabulous Destiny of Galaxies; Bridging Past and Present", Marseille, 200

    Spin fluctuations and superconductivity in a 3D tight-binding model for BaFe2As2

    Full text link
    Despite the wealth of experimental data on the Fe-pnictide compounds of the KFe2As2-type, K = Ba, Ca, or Sr, the main theoretical work based on multiorbital tight-binding models has been restricted so far to the study of the related 1111 compounds. This can be ascribed to the more three dimensional electronic structure found by ab initio calculations for the 122 materials, making this system less amenable to model development. In addition, the more complicated Brillouin zone (BZ) of the body-centered tetragonal symmetry does not allow a straightforward unfolding of the electronic band structure into an effective 1Fe/unit cell BZ. Here we present an effective 5-orbital tight-binding fit of the full DFT band structure for BaFeAs including the kz dispersions. We compare the 5-orbital spin fluctuation model to one previously studied for LaOFeAs and calculate the RPA enhanced susceptibility. Using the fluctuation exchange approximation to determine the leading pairing instability, we then examine the differences between a strictly two dimensional model calculation over a single kz cut of the BZ and a completely three dimensional approach. We find pairing states quite similar to the 1111 materials, with generic quasi-isotropic pairing on the hole sheets and nodal states on the electron sheets at kz = 0 which however are gapped as the system is hole doped. On the other hand, a substantial kz dependence of the order parameter remains, with most of the pairing strength deriving from processes near kz = pi. These states exhibit a tendency for an enhanced anisotropy on the hole sheets and a reduced anisotropy on the electron sheets near the top of the BZ.Comment: 12 pages, 15 figure

    Noise-Activated Escape from a Sloshing Potential Well

    Full text link
    We treat the noise-activated escape from a one-dimensional potential well of an overdamped particle, to which a periodic force of fixed frequency is applied. We determine the boundary layer behavior, and the physically relevant length scales, near the oscillating well top. We show how stochastic behavior near the well top generalizes the behavior first determined by Kramers, in the case without forcing. Both the case when the forcing dies away in the weak noise limit, and the case when it does not, are examined. We also discuss the relevance of various scaling regimes to recent optical trap experiments.Comment: 9 pages, no figures, REVTeX, expanded versio
    corecore