59 research outputs found

    Photometric Evaluation of Photo-luminescent Materials for Multi-Egress Guidance Placards: Lighting Environment Test Facility

    Get PDF
    The purpose of this investigation was to evaluate several photo luminescent (PL) materials being considered for construction of emergency egress placards in the International Space Station (ISS). The use of PL material is intended to allow the placards to be read by ISS crew members in the event of an extensive power failure resulting in the loss of interior illumination

    Utilization of the Space Vision System as an Augmented Reality System For Mission Operations

    Get PDF
    Augmented reality is a technique whereby computer generated images are superimposed on live images for visual enhancement. Augmented reality can also be characterized as dynamic overlays when computer generated images are registered with moving objects in a live image. This technique has been successfully implemented, with low to medium levels of registration precision, in an NRA funded project entitled, "Improving Human Task Performance with Luminance Images and Dynamic Overlays". Future research is already being planned to also utilize a laboratory-based system where more extensive subject testing can be performed. However successful this might be, the problem will still be whether such a technology can be used with flight hardware. To answer this question, the Canadian Space Vision System (SVS) will be tested as an augmented reality system capable of improving human performance where the operation requires indirect viewing. This system has already been certified for flight and is currently flown on each shuttle mission for station assembly. Successful development and utilization of this system in a ground-based experiment will expand its utilization for on-orbit mission operations. Current research and development regarding the use of augmented reality technology is being simulated using ground-based equipment. This is an appropriate approach for development of symbology (graphics and annotation) optimal for human performance and for development of optimal image registration techniques. It is anticipated that this technology will become more pervasive as it matures. Because we know what and where almost everything is on ISS, this reduces the registration problem and improves the computer model of that reality, making augmented reality an attractive tool, provided we know how to use it. This is the basis for current research in this area. However, there is a missing element to this process. It is the link from this research to the current ISS video system and to flight hardware capable of utilizing this technology. This is the basis for this proposed Space Human Factors Engineering project, the determination of the display symbology within the performance limits of the Space Vision System that will objectively improve human performance. This utilization of existing flight hardware will greatly reduce the costs of implementation for flight. Besides being used onboard shuttle and space station and as a ground-based system for mission operational support, it also has great potential for science and medical training and diagnostics, remote learning, team learning, video/media conferencing, and educational outreach

    Solid State Light Evaluation in the U.S. Lab Mockup

    Get PDF
    This document constitutes the publication of work performed by the Space Human Factors Laboratory (mail code SF5 at the time) at the Johnson Space Center (JSC) in the months of June and July of 2000. At that time, the Space Human Factors Laboratory was part of the Space Human Factors Branch in the Flight Projects Division of the Space and Life Directorate. This report was originally to be a document for internal consumption only at JSC as it was seen to be only preliminary work for the further development of solid state illumination for general lighting on future space vehicles and the International Space Station (ISS). Due to funding constraints, immediate follow-on efforts were delayed and the need for publication of this document was overcome by other events. However, in recent years and with the development and deployment of a solid state light luminaire prototype on ISS, the time was overdue for publishing this information for general distribution and reference. Solid state lights (SSLs) are being developed to potentially replace the general luminaire assemblies (GLAs) currently in service in the International Space Station (ISS) and included in designs of modules for the ISS. The SSLs consist of arrays of light emitting diodes (LEDs), small solid state electronic devices that produce visible light in proportion to the electrical current flowing through them. Recent progressive advances in electrical power-to-light conversion efficiency in LED technology have allowed the consideration of LEDs as replacements for incandescent and fluorescent light sources in many circumstances, and their inherent advantages in ruggedness, reliability, and life expectancy make them attractive for applications in spacecraft. One potential area of application for the SSLs in the U.S. Laboratory Module of the ISS. This study addresses the suitability of the SSLs as replacements for the GLAs in this application

    Introduction to the Solid State Based Interior Lighting System for ISS

    Get PDF
    Solid state lighting assembly (SSLA) were designed to replace general luminaire assembly (GLA) for both general interior illumination and improved circadian rhythm through melatonin control using multiple spectrums. To accomplish these goals, the light is design to operate in 3 modes with 3 distinct spectrum. The different spectrum provide control of the blue portion of the light which impacts melatonin production in humans which impacts sleep. General mode is a 4500K "neutral" light spectrum intended to the be the default mode of operation for day to day operations. Pre-sleep mode is a 2700K "warm" light spectrum intended to be used by the crew at the end of the work day. Phase-shift mode is a 6500K "cool" light spectrum intended to be used for altering the crew's sleep patterns

    The Use of Photo-Luminescence as an Emergency Egress Guidance System on ISS

    Get PDF
    Because ever increasing performance, photoluminescence has moved from glow in the dark toys to greatly expanded use in offices, factories, homes and many other places where it can be charged regularly by light and seen clearly and effectively in the dark for extended periods of time

    Correlation and prediction of dynamic human isolated joint strength from lean body mass

    Get PDF
    A relationship between a person's lean body mass and the amount of maximum torque that can be produced with each isolated joint of the upper extremity was investigated. The maximum dynamic isolated joint torque (upper extremity) on 14 subjects was collected using a dynamometer multi-joint testing unit. These data were reduced to a table of coefficients of second degree polynomials, computed using a least squares regression method. All the coefficients were then organized into look-up tables, a compact and convenient storage/retrieval mechanism for the data set. Data from each joint, direction and velocity, were normalized with respect to that joint's average and merged into files (one for each curve for a particular joint). Regression was performed on each one of these files to derive a table of normalized population curve coefficients for each joint axis, direction, and velocity. In addition, a regression table which included all upper extremity joints was built which related average torque to lean body mass for an individual. These two tables are the basis of the regression model which allows the prediction of dynamic isolated joint torques from an individual's lean body mass

    Enhanced Lighting Techniques and Augmented Reality to Improve Human Task Performance

    Get PDF
    One of the most versatile tools designed for use on the International Space Station (ISS) is the Special Purpose Dexterous Manipulator (SPDM) robot. Operators for this system are trained at NASA Johnson Space Center (JSC) using a robotic simulator, the Dexterous Manipulator Trainer (DMT), which performs most SPDM functions under normal static Earth gravitational forces. The SPDM is controlled from a standard Robotic Workstation. A key feature of the SPDM and DMT is the Force/Moment Accommodation (FMA) system, which limits the contact forces and moments acting on the robot components, on its payload, an Orbital Replaceable Unit (ORU), and on the receptacle for the ORU. The FMA system helps to automatically alleviate any binding of the ORU as it is inserted or withdrawn from a receptacle, but it is limited in its correction capability. A successful ORU insertion generally requires that the reference axes of the ORU and receptacle be aligned to within approximately 0.25 inch and 0.5 degree of nominal values. The only guides available for the operator to achieve these alignment tolerances are views from any available video cameras. No special registration markings are provided on the ORU or receptacle, so the operator must use their intrinsic features in the video display to perform the pre-insertion alignment task. Since optimum camera views may not be available, and dynamic orbital lighting conditions may limit viewing periods, long times are anticipated for performing some ORU insertion or extraction operations. This study explored the feasibility of using augmented reality (AR) to assist with SPDM operations. Geometric graphical symbols were overlaid on the end effector (EE) camera view to afford cues to assist the operator in attaining adequate pre-insertion ORU alignment

    Scripting human animations in a virtual environment

    Get PDF
    The current deficiencies of virtual environment (VE) are well known: annoying lag time in drawing the current view, drastically simplified environments to reduce that time lag, low resolution and narrow field of view. Animation scripting is an application of VE technology which can be carried out successfully despite these deficiencies. The final product is a smoothly moving high resolution animation displaying detailed models. In this system, the user is represented by a human computer model with the same body proportions. Using magnetic tracking, the motions of the model's upper torso, head and arms are controlled by the user's movements (18 degrees of freedom). The model's lower torso and global position and orientation are controlled by a spaceball and keypad (12 degrees of freedom). Using this system human motion scripts can be extracted from the user's movements while immersed in a simplified virtual environment. Recorded data is used to define key frames; motion is interpolated between them and post processing adds a more detailed environment. The result is a considerable savings in time and a much more natural-looking movement of a human figure in a smooth and seamless animation

    Predicting and Managing Lighting and Visibility for Human Operations in Space

    Get PDF
    Lighting is critical to human visual performance. On earth this problem is well understood and solutions are well defined and executed. Because the sun rises and sets on average every 45 minutes during Earth orbit, humans working in space must cope with ~ extremely dynamic lighting conditions varying from very low light conditions to severe glare and contrast conditions. For critical operations, it is essential that lighting conditions be predictable and manageable. Mission planners need to detelmine whether low-light video cameras are required or whether additional luminaires, or lamps, need to be flown . Crew and flight directors need to have up to date daylight orbit time lines showing the best and worst viewing conditions for sunlight and shadowing. Where applicable and possible, lighting conditions need to be part of crew training. In addition, it is desirable to optimize the quantity and quality of light because of the potential impacts on crew safety, delivery costs, electrical power and equipment maintainability for both exterior and interior conditions. Addressing these issues, an illumination modeling system has been developed in the Space Human Factors Laboratory at ASA Johnson Space Center. The system is the integration of a physically based ray-tracing package ("Radiance"), developed at the Lawrence Berkeley Laboratories, a human factors oriented geometric modeling system developed by NASA and an extensive database of humans and their work environments. Measured and published data has been collected for exterior and interior surface reflectivity; luminaire beam spread distribution, color and intensity and video camera light sensitivity and has been associated with their corresponding geometric models. Selecting an eye-point and one or more light sources, including sun and earthshine, a ~ snapshot of the light energy reaching the surfaces or reaching the eye point is computed. This energy map is then used to extract the required information needed for useful predictions. Using a validated, comprehensive illumination model integrated with empirically derived data, predictions of lighting and viewing conditions have been successfully used for Shuttle and Space Station planning and assembly operations. It has successfully balanced the needs for adequate human performance with the utili zation of resources. Keywords: Modeling, ray tracing, luminaires, refl ectivity, luminance, illuminance
    • …
    corecore