51 research outputs found

    Aurora kinase B inhibition reduces the proliferation of metastatic melanoma cells and enhances the response to chemotherapy

    Get PDF
    Background: The poor response to chemotherapy and the brief response to vemurafenib in metastatic melanoma patients, make the identification of new therapeutic approaches an urgent need. Interestingly the increased expression and activity of the Aurora kinase B during melanoma progression suggests it as a promising therapeutic target. Methods: The efficacy of the Aurora B kinase inhibitor barasertib-HQPA was evaluated in BRAF mutated cells, sensitive and made resistant to vemurafenib after chronic exposure to the drug, and in BRAF wild type cells. The drug effectiveness has been evaluated as cell growth inhibition, cell cycle progression and cell migration. In addition, cellular effectors of drug resistance and response were investigated. Results: The characterization of the effectors responsible for the resistance to vemurafenib evidenced the increased expression of MITF or the activation of Erk1/2 and p-38 kinases in the newly established cell lines with a phenotype resistant to vemurafenib. The sensitivity of cells to barasertib-HQPA was irrespective of BRAF mutational status. Barasertib-HQPA induced the mitotic catastrophe, ultimately causing apoptosis and necrosis of cells, inhibited cell migration and strongly affected the glycolytic metabolism of cells inducing the release of lactate. In association i) with vemurafenib the gain in effectiveness was found only in BRAF(V600K) cells while ii) with nab-paclitaxel, the combination was more effective than each drug alone in all cells. Conclusions: These findings suggest barasertib as a new therapeutic agent and as enhancer of chemotherapy in metastatic melanoma treatment

    Effects of copper on the tyrosinase of liver pigment cells from Rana esculenta L

    No full text
    he liver pigment cells of R. esculenta L. constitute a peculiar pigment cell system of histiocytic nature and contain a tyrosinase-like activity localized in the protein component of melanosomes. 2. The effects of addition and/or removal of Cu on the DOPA-oxidase activity of the system were studied. 3. It was concluded that: (a) this tyrosinase behaves as a Cu-enzyme; (b) Cu could be involved in the regulation of the enzyme activity; and (c) mixtures of apoenzyme and active enzyme coexist in the melanosomes

    Seasonal variations of Rana esculenta L. skin tyrosinase

    No full text
    Various enzymes are known to be involved in melanin biosynthesis, but the key role appertains to tyrosinase. In amphibians this enzyme displays peculiar characteristics: i) it requires an activation process; ii) its level of enzymatic activity in the animal skin changes depending on the season. In this work, by using chymotrypsin, subtilisin and SDS as putative activators, we studied the activation process of the skin pro-tyrosinase of Rana esculenta L. in different seasons over a period of two years. We found that chymotrypsin and subtilisin were able to yield an active enzyme, but not SDS. The maximum levels of tyrosinase activity were recorded in winter and the minimum in summer. We detected tyrosinase activity in the melanosomal fraction, where the enzyme form was least sensitive to proteolytic activation, probably corresponding to a "mature" tyrosinase. The enzyme forms found in the microsomal and soluble fractions were more sensitive to proteolytic activation, probably corresponding to "immature" tyrosinase. On SDS-PAGE, the tyrosinase activity assays showed a dopa-positive band at 200 kDa and a second aggregated band with a still higher molecular mass. The significance of these results in frog melanogenesis regulation is discussed
    corecore