5,086 research outputs found

    Topological Properties from Einstein's Equations?

    Full text link
    In this work we propose a new procedure for to extract global information of a space-time. We considered a space-time immersed in a higher dimensional space and we formulate the equations of Einstein through of the Frobenius conditions to immersion. Through of an algorithm and the implementation into algebraic computing system we calculate normal vectors from the immersion to find out the second fundamental form. We make a application for space-time with spherical symmetry and static. We solve the equations of Einstein to the vacuum and we obtain space-times with different topologies.Comment: 7 pages, accepted for publication in Int. J. Mod. Phys.

    Particle Creation by a Moving Boundary with Robin Boundary Condition

    Full text link
    We consider a massless scalar field in 1+1 dimensions satisfying a Robin boundary condition (BC) at a non-relativistic moving boundary. We derive a Bogoliubov transformation between input and output bosonic field operators, which allows us to calculate the spectral distribution of created particles. The cases of Dirichlet and Neumann BC may be obtained from our result as limiting cases. These two limits yield the same spectrum, which turns out to be an upper bound for the spectra derived for Robin BC. We show that the particle emission effect can be considerably reduced (with respect to the Dirichlet/Neumann case) by selecting a particular value for the oscillation frequency of the boundary position

    Geometrical Constraints on the Cosmological Constant

    Full text link
    The cosmological constant problem is examined under the assumption that the extrinsic curvature of the space-time contributes to the vacuum. A compensation mechanism based on a variable cosmological term is proposed. Under a suitable hypothesis on the behavior of the extrinsic curvature, we find that an initially large Λ(t)\Lambda(t) rolls down rapidly to zero during the early stages of the universe. Using perturbation analysis, it is shown that such vacuum behaves essentially as a spin-2 field which is independent of the metric.Comment: [email protected], 17 pages, Latex, 2 figures obtained by reques

    Diffusive epidemic process: theory and simulation

    Full text link
    We study the continuous absorbing-state phase transition in the one-dimensional diffusive epidemic process via mean-field theory and Monte Carlo simulation. In this model, particles of two species (A and B) hop on a lattice and undergo reactions B -> A and A + B -> 2B; the total particle number is conserved. We formulate the model as a continuous-time Markov process described by a master equation. A phase transition between the (absorbing) B-free state and an active state is observed as the parameters (reaction and diffusion rates, and total particle density) are varied. Mean-field theory reveals a surprising, nonmonotonic dependence of the critical recovery rate on the diffusion rate of B particles. A computational realization of the process that is faithful to the transition rates defining the model is devised, allowing for direct comparison with theory. Using the quasi-stationary simulation method we determine the order parameter and the survival time in systems of up to 4000 sites. Due to strong finite-size effects, the results converge only for large system sizes. We find no evidence for a discontinuous transition. Our results are consistent with the existence of three distinct universality classes, depending on whether A particles diffusive more rapidly, less rapidly, or at the same rate as B particles.Comment: 19 pages, 5 figure
    • …
    corecore