6,586 research outputs found
Particle Creation by a Moving Boundary with Robin Boundary Condition
We consider a massless scalar field in 1+1 dimensions satisfying a Robin
boundary condition (BC) at a non-relativistic moving boundary. We derive a
Bogoliubov transformation between input and output bosonic field operators,
which allows us to calculate the spectral distribution of created particles.
The cases of Dirichlet and Neumann BC may be obtained from our result as
limiting cases. These two limits yield the same spectrum, which turns out to be
an upper bound for the spectra derived for Robin BC. We show that the particle
emission effect can be considerably reduced (with respect to the
Dirichlet/Neumann case) by selecting a particular value for the oscillation
frequency of the boundary position
Roughness correction to the Casimir force : Beyond the Proximity Force Approximation
We calculate the roughness correction to the Casimir effect in the parallel
plates geometry for metallic plates described by the plasma model. The
calculation is perturbative in the roughness amplitude with arbitrary values
for the plasma wavelength, the plate separation and the roughness correlation
length. The correction is found to be always larger than the result obtained in
the Proximity Force Approximation.Comment: 7 pages, 3 figures, v2 with minor change
Dynamical Casimir effect with cylindrical waveguides
I consider the quantum electromagnetic field in a coaxial cylindrical
waveguide, such that the outer cylindrical surface has a time-dependent radius.
The field propagates parallel to the axis, inside the annular region between
the two cylindrical surfaces. When the mechanical frequency and the thickness
of the annular region are small enough, only Transverse Electromagnetic (TEM)
photons may be generated by the dynamical Casimir effect. The photon emission
rate is calculated in this regime, and compared with the case of parallel
plates in the limit of very short distances between the two cylindrical
surfaces. The proximity force approximation holds for the transition matrix
elements in this limit, but the emission rate scales quadratically with the
mechanical frequency, as opposed to the cubic dependence for parallel plates.Comment: 6 page
- …