223 research outputs found

    AKARI IRC 2.5-5 um Spectroscopy of Infrared Galaxies over a Wide Luminosity Range

    Get PDF
    We present the result of a systematic infrared 2.5-5 um spectroscopic study of 22 nearby infrared galaxies over a wide infrared luminosity range (10 < log(L_IR / Lsun) < 13) obtained from AKARI Infrared Camera (IRC). The unique band of the AKARI IRC spectroscopy enables us to access both the 3.3 um polycyclic aromatic hydrocarbon (PAH) emission feature from star forming activity and the continuum of torus-dust emission heated by an active galactic nucleus (AGN). Applying our AGN diagnostics to the AKARI spectra, we discover 14 buried AGNs. The large fraction of buried AGNs suggests that AGN activity behind the dust is almost ubiquitous in ultra-/luminous infrared galaxies (U/LIRGs). We also find that both the fraction and energy contribution of buried AGNs increase with infrared luminosity from 10 < log(L_IR / Lsun) < 13, including normal infrared galaxies with log (L_IR / Lsun) < 11. The energy contribution from AGNs in the total infrared luminosity is only ~7% in LIRGs and ~20% in ULIRGs, suggesting that the majority of the infrared luminosity originates from starburst activity. Using the PAH emission, we investigate the luminosity relation between star formation and AGN. We find that these infrared galaxies exhibit higher star formation rates than optically selected Seyfert galaxies with the same AGN luminosities, implying that infrared galaxies could be an early evolutionary phase of AGN.Comment: 13 pages, 8 figures, accepted for publication in Ap

    Synchronous improvement in strength and ductility of biomedical Co–Cr–Mo alloys by unique low-temperature heat treatment

    Get PDF
    The microstructure and tensile properties of Co–27Cr–6Mo (mass%) alloys heat-treated at 673–1373 K were studied. Lower elongation was observed after heat treatment at 1073 K due to formation of carbonitride precipitates. In contrast, when low-temperature heat treatment (LTHT) was applied at 673–873 K, both the ultimate tensile strength and elongation synchronously improved compared with the solution-treated alloy. Electron backscatter diffraction analysis for plastic-strained alloys and in situ X-ray diffraction analysis under stress-induced conditions revealed that the strain-induced martensitic transformation (SIMT) of the γ(fcc)-phase to ε(hcp)-phase during plastic deformation was suppressed by the LTHT. Stacking faults (thin ε-phase) were observed to collide in the LTHT alloys. The following mechanisms for the synchronous improvement in the tensile strength and elongation after LHTH are proposed. First, stacking faults with multiple variants were formed during LTHT. Then, the ε-phase of a single variant formed by SIMT during plastic deformation collides with preexisting multi-variant stacking faults formed during LTHT, increasing the tensile strength. In addition, the SIMT during plastic deformation is suppressed in the high-plastic-strain region by the collision. This decreases the total amount of ε-phase formed during plastic deformation, which improves the ductility. We demonstrated that LTHT of Co–Cr–Mo alloys effectively improves the performance and mechanical safety of spinal fixation implants, which often fracture because of fatigue cracking.Ueki K., Abe M., Ueda K., et al. Synchronous improvement in strength and ductility of biomedical Co–Cr–Mo alloys by unique low-temperature heat treatment. Materials Science and Engineering A, 739, 53. https://doi.org/10.1016/j.msea.2018.10.016

    Antimicrobial prescription practices for outpatients with uncomplicated cystitis in Japan

    Get PDF
    To promote antimicrobial stewardship, we studied antimicrobial prescription rates for uncomplicated cystitis, a common outpatient disease requiring antibiotic treatment. This multicenter retrospective study was performed from January 1, 2018, to December 31, 2020, in Japan, targeting outpatients aged >= 20 years whose medical records revealed International Classification of Diseases (ICD-10) codes suggesting uncomplicated cystitis (N300). The data of 1445 patients were collected and that of 902 patients were analyzed. The overall median patient age was 71 years and a proportion of those aged less than 50 years was 18.8% with a female dominance (82.6%). Antimicrobials were prescribed for 884 patients (98.0%) and a total of 623 patients (69.1%) were treated with broad-spectrum drugs, including fluoroquinolones (36.0%), third-generation cephalosporins (29.9%) and faropenem (3.1%). A logistic regression model revealed that the broad-spectrum agents were significantly prescribed for the older patients, male patients, and those who visited internists. Recurrence was observed in 37 (4.1%) cases, and the multivariate analysis suggested any of age, sex, or antimicrobial types were not associated with the recurrence. Collectively, approximately two-thirds of antimicrobials prescribed for uncomplicated cystitis were broad-spectrum agents. The present data would be an indicator for antimicrobial prescriptions in uncomplicated cystitis in Japan

    Three-dimensional human placenta-like bud synthesized from induced pluripotent stem cells

    Get PDF
    Placental dysfunction is related to the pathogenesis of preeclampsia and fetal growth restriction, but there is no effective treatment for it. Recently, various functional three-dimensional organs have been generated from human induced-pluripotent cells (iPSCs), and the transplantation of these iPSCs-derived organs has alleviated liver failure or diabetes mellitus in mouse models. Here we successfully generated a three-dimensional placental organ bud from human iPSCs. The iPSCs differentiated into various lineages of trophoblasts such as cytotrophoblast-like, syncytiotrophoblast-like, and extravillous trophoblast-like cells, forming organized layers in the bud. Placental buds were transplanted to the murine uterus, where 22% of the buds were successfully engrafted. These iPSC-derived placental organ buds could serve as a new model for the study of placental function and pathology

    Resequencing PNMT in European hypertensive and normotensive individuals: no common susceptibilily variants for hypertension and purifying selection on intron 1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human linkage and animal QTL studies have indicated the contribution of genes on Chr17 into blood pressure regulation. One candidate gene is <it>PNMT</it>, coding for phenylethanolamine-N-methyltransferase, catalyzing the synthesis of epinephrine from norepinephrine.</p> <p>Methods</p> <p>Fine-scale variation of <it>PNMT </it>was screened by resequencing hypertensive (n = 50) and normotensive (n = 50) individuals from two European populations (Estonians and Czechs). The resulting polymorphism data were analyzed by statistical genetics methods using Genepop 3.4, PHASE 2.1 and DnaSP 4.0 software programs. <it>In silico </it>prediction of transcription factor binding sites for intron 1 was performed with MatInspector 2.2 software.</p> <p>Results</p> <p><it>PNMT </it>was characterized by minimum variation and excess of rare SNPs in both normo- and hypertensive individuals. None of the SNPs showed significant differences in allelic frequencies among population samples, as well as between screened hypertensives and normotensives. In the joint case-control analysis of the Estonian and the Czech samples, hypertension patients had a significant excess of heterozygotes for two promoter region polymorphisms (SNP-184; SNP-390). The identified variation pattern of <it>PNMT </it>reflects the effect of purifying selection consistent with an important role of PNMT-synthesized epinephrine in the regulation of cardiovascular and metabolic functions, and as a CNS neurotransmitter. A striking feature is the lack of intronic variation. <it>In silico </it>analysis of <it>PNMT </it>intron 1 confirmed the presence of a human-specific putative Glucocorticoid Responsive Element (GRE), inserted by <it>Alu</it>-mediated transfer. Further analysis of intron 1 supported the possible existence of a full Glucocorticoid Responsive Unit (GRU) predicted to consist of multiple gene regulatory elements known to cooperate with GRE in driving transcription. The role of these elements in regulating <it>PNMT </it>expression patterns and thus determining the dynamics of the synthesis of epinephrine is still to be studied.</p> <p>Conclusion</p> <p>We suggest that the differences in PNMT expression between normotensives and hypertensives are not determined by the polymorphisms in this gene, but rather by the interplay of gene expression regulators, which may vary among individuals. Understanding the determinants of PNMT expression may assist in developing PNMT inhibitors as potential novel therapeutics.</p

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
    corecore