7 research outputs found

    Terlipressin versus norepinephrine to prevent milrinone-induced systemic vascular hypotension in cardiac surgery patient with pulmonary hypertension

    No full text
    Introduction: Milrinone at inotropic doses requires the addition of a vasoconstrictive drug. We hypothesized that terlipressin use could selectively recover the systemic vascular hypotension induced by milrinone without increasing the pulmonary vascular resistance (PVR) and mean pulmonary artery pressure (MPAP) as norepinephrine in cardiac surgery patients. Patients and Methods: Patients with pulmonary hypertension were enrolled in this study. At the start of rewarming a milrinone 25 μg/kg bolus over 10 min followed by infusion at the rate of 0.25 μg/kg/min. Just after the loading dose of milrinone, the patients were randomized to receive norepinephrine infusion at a dose of 0.1 μg/kg/min (norepinephrine group) or terlipressin infusion at a dose of 2 μg/kg/h (terlipressin group). Heart rate, mean arterial blood pressure (MAP), central venous pressure, MPAP, systemic vascular resistance (SVR), PVR, cardiac output were measured after induction of anesthesia, after loading dose of milrinone, during skin closure, and in the intensive care unit till 24 h. Results: Milrinone decreased MAP (from 79.56 ± 4.5 to 55.21 ± 2.1 and from 78.46 ± 3.3 to 54.11 ± 1.1) and decreased the MPAP (from 59.5 ± 3.5 to 25.4 ± 2.6 and from 61.3 ± 5.2 to 25.1 ± 2.3) in both groups. After norepinephrine, there was an increase in the MAP which is comparable to terlipressin group (P > 0.05). Terlipressin group shows a significant lower MPAP than norepinephrine group (24.5 ± 1.4 at skin closure vs. 43.3 ± 2.1, than 20.3 ± 2.1 at 24 h vs. 39.8 ± 3.8 postoperatively). There is a comparable increase in the SVR in both group, PVR showed a significant increase in the norepinephrine group compared to the terlipressin group (240.5 ± 23 vs. 140.6 ± 13 at skin closure than 190.3 ± 32 vs. 120.3 ± 10 at 24 h postoperatively). Conclusion: The use of terlipressin after milrinone will reverse systemic hypotension with lesser effect on the pulmonary artery pressure

    Optimization of Extraction of Natural Antimicrobial Pigments Using Supercritical Fluids: A Review

    No full text
    It has become increasingly popular to replace chemically synthesized compounds with natural counterparts mostly found in natural sources, such as natural pigments. The conventional extraction processes for these compounds are limited by the toxicity and flammability of the solvents. To obtain pure extracts, it is always a longer process that requires several steps. Supercritical fluid extraction (SFE) is a cutting-edge green technology that is continuously increasing and expanding its fields of application, with benefits such as no waste produced, shorter extraction time, automation, and lower solvent consumption. The SFE of natural pigments has high potential in food, textiles, cosmetics, and pharmaceuticals; there are a number of other applications that can benefit from the SFE technique of natural pigments. The pigments that are extracted via SFE have a high potential for application and sustainability because of their biological and antimicrobial properties as well as low environmental risk. This review provides an update on the SFE technique, specifically as it pertains to the optimization of health-promoting pigments. This review focuses on antimicrobial pigments and the high efficiency of SFE in extracting pure antimicrobial pigments. In addition, the optimal conditions, biological activities, and possible applications of each category are explained

    Protein kinase expression as a predictive factor for interferon response in chronic hepatitis C patients

    Get PDF
    Egypt has the highest prevalence of hepatitis C virus (HCV) worldwide. Currently, combined pegylated interferon and ribavirin therapy are the standard treatment. The biological activity of interferon (IFN) is mediated by the induction of intracellular antiviral proteins, such as 2′–5′ oligoadenylate synthetase, and dsRNA-activated protein kinase. IFN-inducible double-stranded RNA-activated protein kinase (PKR) is thought to play a key antiviral role against HCV. Some studies observed that PKR expression was higher in sustained viral responders compared with the non-responders. The PKR is considered as antiviral toward HCV and responsible for IFN’s effect against HCV while others have showed that, there were kinetic results indicate that HCV infection is not altered by reduced levels of PKR, indicating that HCV is resistant to the translational inhibitory effects of the phosphorylated forms of PKR. This study was conducted on 50 consecutive patients with chronic HCV infection (CHC) and 20 healthy controls. All the patients were subjected to clinical and laboratory assessment, abdominal ultrasound, and liver biopsy. Determination of PKR gene quantity by using a real time PCR was done at the baseline and at the end of treatment for all patients and controls. Pre-treatment levels of protein kinase gene were significantly higher in responders in comparison with non-responders (P < 0.001). It was found that 97.06% of patients who were responding to treatment had the expression of protein kinase gene greater than 26 cycle threshold

    Novel Antiviral and Antibacterial Durable Polyester Fabrics Printed with Selenium Nanoparticles (SeNPs)

    No full text
    The COVID-19 pandemic has clearly shown the importance of developing advanced protective equipment, and new antiviral fabrics for the protection and prevention of life-threatening viral diseases are needed. In this study, selenium nanoparticles (SeNPs) were combined with polyester fabrics using printing technique to obtain multifunctional properties, including combined antiviral and antibacterial activities as well as coloring. The properties of the printed polyester fabrics with SeNPs were estimated, including tensile strength and color fastness. Characterization of the SeNPs was carried out using TEM and SEM. The results of the analysis showed good uniformity and stability of the particles with sizes range from 40&ndash;60 nm and 40&ndash;80 nm for SeNPs 25 mM and 50 mM, respectively, as well as uniform coating of the SeNPs on the fabric. In addition, the SeNPs&mdash;printed polyester fabric exhibited high disinfection activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with an inhibition percentage of 87.5%. Moreover, a toxicity test of the resulting printed fabric revealed low cytotoxicity against the HFB4 cell line. In contrast, the treated fabric under study showed excellent killing potentiality against Gram-positive bacteria (Bacillus cereus) and Gram-negative bacteria (Pseudomonas aeruginosa, Salmonella typhi, and Escherichia coli). This multifunctional fabric has high potential for use in protective clothing applications by providing passive and active protection pathways
    corecore