6 research outputs found

    Magnetic Fields Recorded by Chondrules Formed in Nebular Shocks

    Full text link
    Recent laboratory efforts (Fu et al., 2014) have constrained the remanent magnetizations of chondrules and the magnetic field strengths at which the chondrules were exposed to as they cooled below their Curie points. An outstanding question is whether the inferred paleofields represent the background magnetic field of the solar nebula or were unique to the chondrule-forming environment. We investigate the amplification of the magnetic field above background values for two proposed chondrule formation mechanisms, large-scale nebular shocks and planetary bow shocks. Behind large-scale shocks, the magnetic field parallel to the shock front is amplified by factors ∼10−30\sim 10-30, regardless of the magnetic diffusivity. Therefore, chondrules melted in these shocks probably recorded an amplified magnetic field. Behind planetary bow shocks, the field amplification is sensitive to the magnetic diffusivity. We compute the gas properties behind a bow shock around a 3000 km-radius planetary embryo, with and without atmospheres, using hydrodynamics models. We calculate the ionization state of the hot, shocked gas, including thermionic emission from dust, and thermal ionization of gas-phase potassium atoms, and the magnetic diffusivity due to Ohmic dissipation and ambipolar diffusion. We find that the diffusivity is sufficiently large that magnetic fields have already relaxed to background values in the shock downstream where chondrules acquire magnetizations, and that these locations are sufficiently far from the planetary embryos that chondrules should not have recorded a significant putative dynamo field generated on these bodies. We conclude that, if melted in planetary bow shocks, chondrules probably recorded the background nebular field.Comment: 17 pages, 11 figures, accepted for publication in Ap

    Planet Four: Probing springtime winds on Mars by mapping the southern polar CO2 jet deposits

    Get PDF
    The springtime sublimation process of Mars’ southern seasonal polar CO2 ice cap features dark fan-shaped de- posits appearing on the top of the thawing ice sheet. The fan material likely originates from the surface below the ice sheet, brought up via CO2 jets breaking through the seasonal ice cap. Once the dust and dirt is released into the atmosphere, the material may be blown by the surface winds into the dark streaks visible from orbit. The location, size and direction of these fans record a number of parameters important to quantifying seasonal winds and sublimation activity, the most important agent of geological change extant on Mars. We present results of a systematic mapping of these south polar seasonal fans with the Planet Four online citizen science project. Planet Four enlists the general public to map the shapes, directions, and sizes of the seasonal fans visible in orbital images. Over 80,000 volunteers have contributed to the Planet Four project, reviewing 221 images, from Mars Reconnaissance Orbiter’s HiRISE (High Resolution Imaging Science Experiment) camera, taken in southern spring during Mars Years 29 and 30. We provide an overview of Planet Four and detail the processes of combining multiple volunteer assessments together to generate a high delity catalog of ∼ 400000 south polar seasonal fans. We present the results from analyzing the wind directions at several locations monitored by HiRISE over two Mars years, providing new insights into polar surface winds

    Planet Four: Probing springtime winds on Mars by mapping the southern polar CO2 jet deposits

    Get PDF
    The springtime sublimation process of Mars' southern seasonal polar CO2_2 ice cap features dark fan-shaped deposits appearing on the top of the thawing ice sheet. The fan material likely originates from the surface below the ice sheet, brought up via CO2_2 jets breaking through the seasonal ice cap. Once the dust and dirt is released into the atmosphere, the material may be blown by the surface winds into the dark streaks visible from orbit. The location, size and direction of these fans record a number of parameters important to quantifying seasonal winds and sublimation activity, the most important agent of geological change extant on Mars. We present results of a systematic mapping of these south polar seasonal fans with the Planet Four online citizen science project. Planet Four enlists the general public to map the shapes, directions, and sizes of the seasonal fans visible in orbital images. Over 80,000 volunteers have contributed to the Planet Four project, reviewing 221 images, from Mars Reconnaissance Orbiter's HiRISE (High Resolution Imaging Science Experiment) camera, taken in southern spring during Mars Years 29 and 30. We provide an overview of Planet Four and detail the processes of combining multiple volunteer assessments together to generate a high fidelity catalog of ∼\sim 400,000 south polar seasonal fans. We present the results from analyzing the wind directions at several locations monitored by HiRISE over two Mars years, providing new insights into polar surface winds.Comment: 75 pages, 46 figures, minor revisions discovered in proof, accepted and in press at Icaru
    corecore