77 research outputs found

    Spatial Frequency Tuning Reveals Interactions between the Dorsal and Ventral Visual Systems

    Get PDF
    It is widely argued that the ability to recognize and identify manipulable objects depends on the retrieval and simulation of action-based information associated with using those objects. Evidence for that view comes from fMRI studies that have reported differential BOLD contrast in dorsal visual stream regions when participants view manipulable objects compared with a range of baseline categories. An alternative interpretation is that processes internal to the ventral visual pathway are sufficient to support the visual identification of manipulable objects and that the retrieval of object-associated use information is contingent on analysis of the visual input by the ventral stream. Here, we sought to distinguish these two perspectives by exploiting the fact that the dorsal stream is largely driven by magnocellular input, which is biased toward low spatial frequency visual information. Thus, any tool-selective responses in parietal cortex that are driven by high spatial frequencies would be indicative of inputs from the ventral visual pathway. Participants viewed images of tools and animals containing only low, or only high, spatial frequencies during fMRI. We find an internal parcellation of left parietal "tool-preferring" voxels: Inferior aspects of left parietal cortex are driven by high spatial frequency information and have privileged connectivity with ventral stream regions that show similar category preferences, whereas superior regions are driven by low spatial frequency information. Our findings suggest that the automatic activation of complex object-associated manipulation knowledge is contingent on analysis of the visual input by the ventral visual pathway

    Affect of the unconscious: Visually suppressed angry faces modulate our decisions

    Get PDF
    Emotional and affective processing imposes itself over cognitive processes and modulates our perception of the surrounding environment. In two experiments, we addressed the issue of whether nonconscious processing of affect can take place even under deep states of unawareness, such as those induced by interocular suppression techniques, and can elicit an affective response that can influence our understanding of the surrounding environment. In Experiment 1, participants judged the likeability of an unfamiliar item--a Chinese character--that was preceded by a face expressing a particular emotion (either happy or angry). The face was rendered invisible through an interocular suppression technique (continuous flash suppression; CFS). In Experiment 2, backward masking (BM), a less robust masking technique, was used to render the facial expressions invisible. We found that despite equivalent phenomenological suppression of the visual primes under CFS and BM, different patterns of affective processing were obtained with the two masking techniques. Under BM, nonconscious affective priming was obtained for both happy and angry invisible facial expressions. However, under CFS, nonconscious affective priming was obtained only for angry facial expressions. We discuss an interpretation of this dissociation between affective processing and visual masking techniques in terms of distinct routes from the retina to the amygdala

    Grasping with the eyes: The role of elongation in visual recognition of manipulable objects

    Get PDF
    Processing within the dorsal visual stream subserves object-directed action, whereas visual object recognition is mediated by the ventral visual stream. Recent findings suggest that the computations performed by the dorsal stream can nevertheless influence object recognition. Little is known, however, about the type of dorsal stream information that is available to assist in object recognition. Here, we present a series of experiments that explored different psychophysical manipulations known to bias the processing of a stimulus toward the dorsal visual stream in order to isolate its contribution to object recognition. We show that elongated-shaped stimuli, regardless of their semantic category and familiarity, when processed by the dorsal stream, elicit visuomotor grasp-related information that affects how we categorize manipulable objects. Elongated stimuli may reduce ambiguity during grasp preparation by providing a coarse cue to hand shaping and orientation that is sufficient to support action planning. We propose that this dorsal-stream-based analysis of elongation along a principal axis is the basis for how the dorsal visual object processing stream can affect categorization of manipulable objects

    The burden of embodied cognition.

    No full text

    Response to Glenberg: Conceptual content does not constrain the representational format of concepts.

    No full text
    corecore