3 research outputs found

    Analysis of the Optimum Tapering Angle in Microanastomosis Using Computational Fluid Dynamics

    Get PDF
    Background: In free flap transfer, size discrepancy between the vascular pedicle and recipient vessel can create a problem for microsurgeons and sometimes induces postoperative thrombus formation. When there is a major difference between the diameters of the vascular pedicle and the recipient vessel, the larger vessel is often tapered to perform the anastomosis properly. However, the decision on the tapering angle used depends mostly on the operator’s experience. In this study, computational fluid dynamics (CFD) was used to investigate the optimum tapering angle. Methods: Using ANSYS ICEM 16.0 (ANSYS Japan, Tokyo, Japan), simulated vessels of diameters 1.5 mm and 3.0 mm were designed and then used to produce four anastomosis models with the 3.0-mm vessel tapered at angles of 15Âș, 30Âș, 60Âș, and 90Âș (no tapering). Venous perfusion with a mean value of 13.0 mL/min was simulated, and this was passed through the four anastomosis models in both the forward direction (F), from the smaller to the larger vessel, and the retrograde direction (R), from the larger to the smaller vessel. The velocity, wall shear stress (WSS), and oscillatory shear index (OSI) were measured in these eight patterns and then analyzed using OpenFOAM version 5. Results: The decrease in velocity was limiting. The WSS was greater in the R direction than the F direction at every tapering angle. The OSI also tended to be almost the same in the F direction, and lower at smaller tapering angles in the R direction. And, it was greater in the F direction than in the R direction at every tapering angle. The OSI values for 15Âș and 30Âș were almost identical in the R direction. Conclusion: The risk of thrombus formation is thought to be lower when tapering is used for anastomosis if the direction of flow is from the larger to the smaller vessel, rather than vice versa. These results also suggest that the optimum tapering angle is approximately 30Âș in both directions

    The Square-Plus Flap: A Modification to Release Long Post-Burn Scar Contractures

    No full text
    The square flap method has been successful in releasing contracture bands at various body regions. However, the original square flap method alone may not be efficient in releasing long contracture bands. We, therefore, proposed an extended design to the traditional design, which is called the “square-plus flap”. A 4-year-old girl presented with a post-burn web-like contracture band over the right axilla. We marked a square flap technique at the center of the contracture band and then two additional Z-plasties were placed on both edges of the flap. After the release and securing of the square flap, the adjacent distal z-plasty was then transposed and sutured in their new locations. We do not need to incise the proximal z-plasty as we could achieve complete relaxation of the contracture band. This novel modification can be added to the plastic surgeon’s armamentarium for releasing long post-burn contracture bands involving distinct body regions

    Reliability and Safety of Cross-Leg Free Latissmus Dorsi Muscle Flap in Reconstruction of Mutilating Leg Injuries Using End-to-Side Anastomosis

    No full text
    Background Free tissue transfer is considered the gold standard option for the reconstruction of distal leg defects. Free tissue transfer using recipient vessels in the contralateral leg (cross-leg bridge) is a potential option to supply the flap if there are no suitable recipient vessels in the injured leg. Most studies have described this technique using end-to-end anastomosis which sacrifices the main vessel in the uninjured leg. This study evaluated the use of a cross-leg free latissimus dorsi muscle flap for the reconstruction of defects in single-vessel legs, using end-to-side anastomosis to recipient vessels in the contralateral leg without sacrificing any vessel in the uninjured leg
    corecore