2,092 research outputs found

    Quantum network architecture of tight-binding models with substitution sequences

    Full text link
    We study a two-spin quantum Turing architecture, in which discrete local rotations \alpha_m of the Turing head spin alternate with quantum controlled NOT-operations. Substitution sequences are known to underlie aperiodic structures. We show that parameter inputs \alpha_m described by such sequences can lead here to a quantum dynamics, intermediate between the regular and the chaotic variant. Exponential parameter sensitivity characterizing chaotic quantum Turing machines turns out to be an adequate criterion for induced quantum chaos in a quantum network.Comment: Accepted for publication in J. mod. Optics [Proc. Workshop "Entanglement and Decoherence", Gargnano (Italy), Sept 1999], 3 figure

    Local Versus Global Thermal States: Correlations and the Existence of Local Temperatures

    Get PDF
    We consider a quantum system consisting of a regular chain of elementary subsystems with nearest neighbor interactions and assume that the total system is in a canonical state with temperature TT. We analyze under what condition the state factors into a product of canonical density matrices with respect to groups of nn subsystems each, and when these groups have the same temperature TT. While in classical mechanics the validity of this procedure only depends on the size of the groups nn, in quantum mechanics the minimum group size nminn_{min} also depends on the temperature TT ! As examples, we apply our analysis to a harmonic chain and different types of Ising spin chains. We discuss various features that show up due to the characteristics of the models considered. For the harmonic chain, which successfully describes thermal properties of insulating solids, our approach gives a first quantitative estimate of the minimal length scale on which temperature can exist: This length scale is found to be constant for temperatures above the Debye temperature and proportional to T3T^{-3} below.Comment: 12 pages, 5 figures, discussion of results extended, accepted for publication in Phys. Rev.

    Analysis of contagion maps on a class of networks that are spatially embedded in a torus

    Full text link
    A spreading process on a network is influenced by the network's underlying spatial structure, and it is insightful to study the extent to which a spreading process follows such structure. We consider a threshold contagion on a network whose nodes are embedded in a manifold and where the network has both `geometric edges', which respect the geometry of the underlying manifold, and `non-geometric edges' that are not constrained by that geometry. Building on ideas from Taylor et al. \cite{Taylor2015}, we examine when a contagion propagates as a wave along a network whose nodes are embedded in a torus and when it jumps via long non-geometric edges to remote areas of the network. We build a `contagion map' for a contagion spreading on such a `noisy geometric network' to produce a point cloud; and we study the dimensionality, geometry, and topology of this point cloud to examine qualitative properties of this spreading process. We identify a region in parameter space in which the contagion propagates predominantly via wavefront propagation. We consider different probability distributions for constructing non-geometric edges --- reflecting different decay rates with respect to the distance between nodes in the underlying manifold --- and examine the effect of such choices on the qualitative properties of the spreading dynamics. Our work generalizes the analysis in Taylor et al. and consolidates contagion maps both as a tool for investigating spreading behavior on spatial networks and as a technique for manifold learning

    Measurable Consequences of the Local Breakdown of the Concept of Temperature

    Full text link
    Local temperature defined by a local canonical state of the respective subsystem, does not always exist in quantum many body systems. Here, we give some examples of how this breakdown of the temperature concept on small length scales might be observed in experiments: Measurements of magnetic properties of an anti-ferromagnetic spin-1 chain. We show that those magnetic properties are in fact strictly local. As a consequence their measurement reveals whether the local (reduced) state can be thermal. If it is, a temperature may be associated to the measurement results, while this would lead to inconsistencies otherwise.Comment: some comments added, results remain unchange

    Multipartite entanglement in fermionic systems via a geometric measure

    Full text link
    We study multipartite entanglement in a system consisting of indistinguishable fermions. Specifically, we have proposed a geometric entanglement measure for N spin-1/2 fermions distributed over 2L modes (single particle states). The measure is defined on the 2L qubit space isomorphic to the Fock space for 2L single particle states. This entanglement measure is defined for a given partition of 2L modes containing m >= 2 subsets. Thus this measure applies to m <= 2L partite fermionic system where L is any finite number, giving the number of sites. The Hilbert spaces associated with these subsets may have different dimensions. Further, we have defined the local quantum operations with respect to a given partition of modes. This definition is generic and unifies different ways of dividing a fermionic system into subsystems. We have shown, using a representative case, that the geometric measure is invariant under local unitaries corresponding to a given partition. We explicitly demonstrate the use of the measure to calculate multipartite entanglement in some correlated electron systems. To the best of our knowledge, there is no usable entanglement measure of m > 3 partite fermionic systems in the literature, so that this is the first measure of multipartite entanglement for fermionic systems going beyond the bipartite and tripartite cases.Comment: 25 pages, 8 figure

    Phase space contraction and quantum operations

    Full text link
    We give a criterion to differentiate between dissipative and diffusive quantum operations. It is based on the classical idea that dissipative processes contract volumes in phase space. We define a quantity that can be regarded as ``quantum phase space contraction rate'' and which is related to a fundamental property of quantum channels: non-unitality. We relate it to other properties of the channel and also show a simple example of dissipative noise composed with a chaotic map. The emergence of attaractor-like structures is displayed.Comment: 8 pages, 6 figures. Changes added according to refferee sugestions. (To appear in PRA

    Water issues in Hawaii: public attitudes in 2004 and 2010

    Get PDF
    This report examines Hawai‘i residents' awareness of, attitudes about, and actions taken concerning water quality. "Water quality" is a measure of the suitability of water for a particular use, such as drinking, recreation, agricultural irrigation, or protection and maintenance of aquatic life
    corecore