11 research outputs found

    Relational effects of relative performance information: the role of professional identity

    No full text
    Prior accounting studies on relative performance information (RPI) have mainly considered the effects of RPI on employees’ performance. This study extends this stream of research by investigating relational effects of RPI that capture RPI recipients’ attitudes towards RPI provision. Specifically, we examine the conditions under which RPI has a positive influence on perceived organizational support (POS). This is important because research on organizational behaviour has demonstrated that POS is an antecedent of desirable job-related attitudes such as organizational commitment, job involvement, and extra-role performance. The results of a dyadic survey in a hospital setting suggest that the effect of RPI on POS is conditional not only on the perceived usefulness of information and relative performance but also on the professional identification of RPI recipients. Our findings indicate that RPI provision is especially suitable for employees who possess a stronger social identification with their peer groups. Our study adds a relational perspective to the hitherto mostly informational and motivational focus in studying social comparison mechanisms linked to RPI systems

    Preparation of colloidal nanoparticles of mixed metal oxides containing platinum, ruthenium, osmium, and iridium and their use as electrocatalysts

    No full text
    The hydrolysis of H2PtCl6, RuCl3, OsCl3, and H2IrCl6 under basic conditions in the presence of a water-soluble betaine stabilizer affords aqueous colloidal solutions of the mixed metal oxide PtRuOsIrOx displaying a particle size of 1.3-1.6 nm. The ratio of the four metals can be adjusted by choosing the appropriate relative amounts of metal salts. Characterization was accomplished by TEM, XPS, and XRD. Immobilization of the reduced form on high surface conducting carbon leads to materials which are excellent electrocatalysts showing unusually high resistance to CO poisoning

    Energy Storage as Part of a Secure Energy Supply

    No full text
    The current energy system is subject to a fundamental transformation: A system that is oriented towards a constant energy supply by means of fossil fuels is now expected to integrate increasing amounts of renewable energy to achieve overall a more sustainable energy supply. The challenges arising from this paradigm shift are currently most obvious in the area of electric power supply. However, it affects all areas of the energy system, albeit with different results. Within the energy system, various independent grids fulfill the function of transporting and spatially distributing energy or energy carriers, and the demand-oriented supply ensures that energy demands are met at all times. However, renewable energy sources generally supply their energy independently from any specific energy demand. Their contribution to the overall energy system is expected to increase significantly. Energy storage technologies are one option for temporal matching of energy supply and demand. Energy storage systems have the ability to take up a certain amount of energy, store it in a storage medium for a suitable period of time, and release it in a controlled manner after a certain time delay. Energy storage systems can also be constructed as process chains by combining unit operations, each of which cover different aspects of these functions. Large-scale mechanical storage of electric power is currently almost exclusively achieved by pumped-storage hydroelectric power stations. These systems may be supplemented in the future by compressed-air energy storage and possibly air separation plants. In the area of electrochemical storage, various technologies are currently in various stages of research, development, and demonstration of their suitability for large-scale electrical energy storage. Thermal energy storage technologies are based on the storage of sensible heat, exploitation of phase transitions, adsorption/desorption processes, and chemical reactions. The latter offer the possibility of permanent and loss-free storage of heat. The storage of energy in chemical bonds involves compounds that can act as energy carriers or as chemical feedstocks. Thus, they are in direct economic competition with established (fossil fuel) supply routes. The key technology here – now and for the foreseeable future – is the electrolysis of water to produce hydrogen and oxygen. Hydrogen can be transformed by various processes into other energy carriers, which can be exploited in different sectors of the energy system and/or as raw materials for energy-intensive industrial processes. Some functions of energy storage systems can be taken over by industrial processes. Within the overall energy system, chemical energy storage technologies open up opportunities to link and interweave the various energy streams and sectors. Chemical energy storage not only offers means for greater integration of renewable energy outside the electric power sector, it also creates new opportunities for increased flexibility, novel synergies, and additional optimization. Several examples of specific energy utilization are discussed and evaluated with respect to energy storage applications.The article describes various technologies for energy storage and their potential applications in the context of Germany's Energiewende, i.e. the transition towards a more sustainable energy system. Therefore, the existing legal framework defines some of the discussions and findings within the article, specifically the compensation for renewable electricity providers defined by the German Renewable Energy Sources Act, which is under constant reformation. While the article is written from a German perspective, the authors hope this article will be of general interest for anyone working in the areas of energy systems or energy technology

    Debt Pressure and the Choice of Interactive Control Systems: Effects on Cost of Debt

    No full text
    corecore