1,358 research outputs found

    Can we improve outcome of congenital diaphragmatic hernia?

    Get PDF
    This review gives an overview of the disease spectrum of congenital diaphragmatic hernia (CDH). Etiological factors, prenatal predictors of survival, new treatment strategies and long-term morbidity are described. Early recognition of problems and improvement of treatment strategies in CDH patients may increase survival and prevent secondary morbidity. Multidisciplinary healthcare is necessary to improve healthcare for CDH patients. Absence of international therapy guidelines, lack of evidence of many therapeutic modalities and the relative low number of CDH patients calls for cooperation between centers with an expertise in the treatment of CDH patients. The international CDH Euro-Consortium is an example of such a collaborative network, which enhances exchange of knowledge, future research and development of treatment protocols

    An Implantable Vascularized Protein Gel Construct That Supports Human Fetal Hepatoblast Survival and Infection by Hepatitis C Virus in Mice

    Get PDF
    Widely accessible small animal models suitable for the study of hepatitis C virus (HCV) in vivo are lacking, primarily because rodent hepatocytes cannot be productively infected and because human hepatocytes are not easily engrafted in immunodeficient mice.We report here on a novel approach for human hepatocyte engraftment that involves subcutaneous implantation of primary human fetal hepatoblasts (HFH) within a vascularized rat collagen type I/human fibronectin (rCI/hFN) gel containing Bcl-2-transduced human umbilical vein endothelial cells (Bcl-2-HUVEC) in severe combined immunodeficient X beige (SCID/bg) mice. Maturing hepatic epithelial cells in HFH/Bcl-2-HUVEC co-implants displayed endocytotic activity at the basolateral surface, canalicular microvilli and apical tight junctions between adjacent cells assessed by transmission electron microscopy. Some primary HFH, but not Huh-7.5 hepatoma cells, appeared to differentiate towards a cholangiocyte lineage within the gels, based on histological appearance and cytokeratin 7 (CK7) mRNA and protein expression. Levels of human albumin and hepatic nuclear factor 4alpha (HNF4alpha) mRNA expression in gel implants and plasma human albumin levels in mice engrafted with HFH and Bcl-2-HUVEC were somewhat enhanced by including murine liver-like basement membrane (mLBM) components and/or hepatocyte growth factor (HGF)-HUVEC within the gel matrix. Following ex vivo viral adsorption, both HFH/Bcl-2-HUVEC and Huh-7.5/Bcl-2-HUVEC co-implants sustained HCV Jc1 infection for at least 2 weeks in vivo, based on qRT-PCR and immunoelectron microscopic (IEM) analyses of gel tissue.The system described here thus provides the basis for a simple and robust small animal model of HFH engraftment that is applicable to the study of HCV infections in vivo

    Search for a vector-like quark T′ → tH via the diphoton decay mode of the Higgs boson in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    A search for the electroweak production of a vector-like quark T′, decaying to a top quark and a Higgs boson is presented. The search is based on a sample of proton-proton collision events recorded at the LHC at = 13 TeV, corresponding to an integrated luminosity of 138 fb−1. This is the first T′ search that exploits the Higgs boson decay to a pair of photons. For narrow isospin singlet T′ states with masses up to 1.1 TeV, the excellent diphoton invariant mass resolution of 1–2% results in an increased sensitivity compared to previous searches based on the same production mechanism. The electroweak production of a T′ quark with mass up to 960 GeV is excluded at 95% confidence level, assuming a coupling strength κT = 0.25 and a relative decay width Γ/MT′ < 5%

    Search for pair-produced vector-like leptons in final states with third-generation leptons and at least three b quark jets in proton-proton collisions at √s = 13 TeV

    Get PDF

    Proton reconstruction with the CMS-TOTEM Precision Proton Spectrometer

    Get PDF
    The Precision Proton Spectrometer (PPS) of the CMS and TOTEM experiments collected 107.7 fb-1 in proton-proton (pp) collisions at the LHC at 13 TeV (Run 2). This paper describes the key features of the PPS alignment and optics calibrations, the proton reconstruction procedure, as well as the detector efficiency and the performance of the PPS simulation. The reconstruction and simulation are validated using a sample of (semi)exclusive dilepton events. The performance of PPS has proven the feasibility of continuously operating a near-beam proton spectrometer at a high luminosity hadron collider

    Search for high-mass exclusive γγ → WW and γγ → ZZ production in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF

    Measurement of the B0^{0}s_{s} → μ+^{+} μ^{-} decay properties and search for the B0^{0} → μ+^{+}μ^{-} decay in proton-proton collisions at √s = 13 TeV

    Get PDF

    Search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state in proton-proton collisions at √s = 13 TeV

    Get PDF
    A search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state is presented. The analysis is based on proton-proton collision data recorded by the CMS detector in 2016–2018 at a centre-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 138 fb−1. The search is sensitive to resonances with masses between 1.3 and , decaying to bosons that are highly Lorentz-boosted such that each of the bosons forms a single large-radius jet. Machine learning techniques are employed to identify such jets. No significant excess over the estimated standard model background is observed. A maximum local significance of 3.6 standard deviations, corresponding to a global significance of 2.3 standard deviations, is observed at masses of 2.1 and 2.9 TeV. In a heavy vector triplet model, spin-1 and resonances with masses below are excluded at the 95% confidence level (CL). These limits are the most stringent to date. In a bulk graviton model, spin-2 gravitons and spin-0 radions with masses below 1.4 and , respectively, are excluded at 95% CL. Production of heavy resonances through vector boson fusion is constrained with upper cross section limits at 95% CL as low as 0.1 fb

    Evidence for WW/WZ vector boson scattering in the decay channel ℓνqq produced in association with two jets in proton-proton collisions at √s = 13 TeVV

    Get PDF
    Copyright © 2022 The Author(s). Evidence is reported for electroweak (EW) vector boson scattering in the decay channel ℓνqq of two weak vector bosons WV (V = W or Z), produced in association with two parton jets. The search uses a data set of proton-proton collisions at 13 TeV collected with the CMS detector during 2016–2018 with an integrated luminosity of 138 fb−1. Events are selected requiring one lepton (electron or muon), moderate missing transverse momentum, two jets with a large pseudorapidity separation and a large dijet invariant mass, and a signature consistent with the hadronic decay of a W/Z boson. The cross section is computed in a fiducial phase space defined at parton level requiring all parton transverse momenta pT > 10 GeV and at least one pair of outgoing partons with invariant mass mqq > 100 GeV. The measured and expected EW WV production cross sections are 1.90+0.53 −0.46 pb and 2.23+0.08 −0.11(scale) ± 0.05(PDF) pb, respectively, where PDF is the parton distribution function. The observed EW signal strength is μEW = 0.85 ± 0.12 (stat) +0.19 −0.17 (syst), corresponding to a signal significance of 4.4 standard deviations with 5.1 expected, and it is measured keeping the quantum chromodynamics (QCD) associated diboson production fixed to the standard model prediction. This is the first evidence of vector boson scattering in the ℓνqq decay channel at LHC. The simultaneous measurement of the EW and QCD associated diboson production agrees with the standard model prediction.SCOAP

    Search for new particles in an extended Higgs sector with four b quarks in the final state at √s = 13 TeV

    Get PDF
    corecore