30 research outputs found

    Vibration based piezoelectric energy harvesting utilizing bridgeless rectifier circuit

    Get PDF
    The energy harvesting technique has the capability to build autonomous, self-powered electronic systems that does not depend on the battery power for driving the low power electronics devices. In this paper, a voltage doubler and bridgeless boost rectifier power electronic converter is proposed to increase the energy harvesting output voltage from piezoelectric vibration based transducer. The conventional full-wave diode bridge rectifier and boost converter for energy harvesting system increases significant voltage drop and power losses in the circuit. However, the proposed voltage doubler and bridgeless boost rectifier circuit reduce the voltage drop and power loses in the circuit and thus increases the efficiency of the circuit. The proposed voltage doubler and bridgeless boost rectifier circuit step-up the output voltage up to 3 V DC from an input voltage of 1.9 V AC

    Enhancement of Solar PV Hosting Capacity in a Remote Industrial Microgrid: A Methodical Techno-Economic Approach

    Get PDF
    To meet the zero-carbon electricity generation target as part of the sustainable development goals (SDG7), remote industrial microgrids worldwide are considering the uptake of more and more renewable energy resources, especially solar PV systems. Estimating the grid PV hosting capacity plays an essential role in designing and planning such microgrids. PV hosting capacity assessment determines the maximum PV capacity suitable for the grid and the appropriate electrical location for PV placement. This research reveals that conventional static criteria to assess the PV hosting capacity fail to ensure the grid’s operational robustness. It hence demands a reduction in the theoretical hosting capacity estimation to ensure grid compatible post-fault voltage and frequency recovery. Energy storage technologies, particularly fast-responsive batteries, can potentially prevent such undesirable scenarios; nevertheless, careful integration is required to ensure an affordable cost of energy. This study proposes a novel methodical techno-economic approach for an off-grid remote industrial microgrid to enhance the PV hosting capacity by integrating battery energy storage considering grid disturbance and recovery scenarios. The method has been validated in an industrial microgrid with a 2.6 MW peak demand in a ready-made garment (RMG) factory having a distinctive demand pattern and unique constraints in remote Bangladesh. According to the analysis, integrating 2.5 MW of PV capacity and a 1.2 MVA battery bank to offset existing diesel and grid consumption would result in an energy cost of BDT 14.60 per kWh (USD 0.1719 per kWh). For high PV penetration scenarios, the application of this method offers higher system robustness, and the financial analysis indicates that the industries would not only benefit from positive environmental impact but also make an economic profit

    Synergistic enhancement in the microelectronic properties of poly-(dioctylfluorene) based Schottky devices by CdSe quantum dots

    Get PDF
    This paper reports the potential application of cadmium selenide (CdSe) quantum dots (QDs) in improving the microelectronic characteristics of Schottky barrier diode (SBD) prepared from a semiconducting material poly-(9,9-dioctylfluorene) (F8). Two SBDs, Ag/F8/P3HT/ITO and Ag/F8-CdSe QDs/P3HT/ITO, are fabricated by spin coating a 10 wt% solution of F8 in chloroform and 10:1 wt% solution of F8:CdSe QDs, respectively, on a pre-deposited poly(3-hexylthiophene) (P3HT) on indium tin oxide (ITO) substrate. To study the electronic properties of the fabricated devices, current-voltage (I-V) measurements are carried out at 25 °C in dark conditions. The I-V curves of Ag/F8/P3HT/ITO and Ag/F8-CdSe QDs/P3HT/ITO SBDs demonstrate asymmetrical behavior with forward bias current rectification ratio (RR) of 7.42 ± 0.02 and 142 ± 0.02, respectively, at ± 3.5 V which confirm the formation of depletion region. Other key parameters which govern microelectronic properties of the fabricated devices such as charge carrier mobility (µ), barrier height (ϕ ), series resistance (R ) and quality factor (n) are extracted from their corresponding I-V characteristics. Norde's and Cheung functions are also applied to characterize the devices to study consistency in various parameters. Significant improvement is found in the values of R , n, and RR by 3, 1.7, and 19 times, respectively, for Ag/F8-CdSe QDs/P3HT/ITO SBD as compared to Ag/F8/P3HT/ITO. This enhancement is due to the incorporation of CdSe QDs having 3-dimensional quantum confinement and large surface-to-volume area. Poole-Frenkle and Richardson-Schottky conduction mechanisms are also discussed for both of the devices. Morphology, optical bandgap (1.88 ± 0.5 eV) and photoluminescence (PL) spectrum of CdSe QDs with a peak intensity at 556 nm are also reported and discussed

    Techno-economic and carbon emission assessment of a large-scale floating solar pv system for sustainable energy generation in support of malaysia’s renewable energy roadmap

    Get PDF
    Energy generation from renewable sources is a global trend due to the carbon emissions generated by fossil fuels, which cause serious harm to the ecosystem. As per the long-term goals of the ASEAN countries, the Malaysian government established a target of 31% renewable energy generation by 2025 to facilitate ongoing carbon emission reductions. To reach the goal, a large-scale solar auction is one of the most impactful initiatives among the four potential strategies taken by the government. To assist the Malaysian government’s large-scale solar policy as detailed in the national renewable energy roadmap, this article investigated the techno-economic and feasibility aspects of a 10 MW floating solar PV system at UMP Lake. The PVsyst 7.3 software was used to develop and compute energy production and loss estimation. The plant is anticipated to produce 17,960 MWh of energy annually at a levelized cost of energy of USD 0.052/kWh. The facility requires USD 8.94 million in capital costs that would be recovered within a payback period of 9.5 years from the date of operation. The plant is expected to reduce carbon emissions by 11,135.2 tons annually. The proposed facility would ensure optimal usage of UMP Lake and contribute to the Malaysian government’s efforts toward sustainable growth

    A New Method for a Piezoelectric Energy Harvesting System Using a Backtracking Search Algorithm-Based PI Voltage Controller

    No full text
    This paper presents a new method for a vibration-based piezoelectric energy harvesting system using a backtracking search algorithm (BSA)-based proportional-integral (PI) voltage controller. This technique eliminates the exhaustive conventional trial-and-error procedure for obtaining optimized parameter values of proportional gain (Kp), and integral gain (Ki) for PI voltage controllers. The generated estimate values of Kp and Ki are executed in the PI voltage controller that is developed through the BSA optimization technique. In this study, mean absolute error (MAE) is used as an objective function to minimize output error for a piezoelectric energy harvesting system (PEHS). The model for the PEHS is designed and analyzed using the BSA optimization technique. The BSA-based PI voltage controller of the PEHS produces a significant improvement in minimizing the output error of the converter and a robust, regulated pulse-width modulation (PWM) signal to convert a MOSFET switch, with the best response in terms of rise time and settling time under various load conditions

    State of the Art of Urban Smart Vertical Farming Automation System: Advanced Topologies, Issues and Recommendations

    No full text
    The global economy is now under threat due to the ongoing domestic and international lockdown for COVID-19. Many have already lost their jobs, and businesses have been unstable in the Corona era. Apart from educational institutions, banks, privately owned institutions, and agriculture, there are signs of economic recession in almost all sectors. The roles of modern technology, the Internet of things, and artificial intelligence are undeniable in helping the world achieve economic prosperity in the post-COVID-19 economic downturn. Food production must increase by 60% by 2050 to meet global food security demands in the face of uncertainty such as the COVID-19 pandemic and a growing population. Given COVID 19’s intensity and isolation, improving food production and distribution systems is critical to combating hunger and addressing the double burden of malnutrition. As the world’s population is growing day by day, according to an estimation world’s population reaches 9.6 billion by 2050, so there is a growing need to modify the agriculture methods, technologies so that maximum crops can be attained and human effort can be reduced. The urban smart vertical farming (USVF) is a solution to secure food production, which can be introduced at any adaptive reuse, retrofit, or new buildings in vertical manners. This paper aims to provide a comprehensive review of the concept of USVF using various techniques to enhance productivity as well as its types, topologies, technologies, control systems, social acceptance, and benefits. This review has focused on numerous issues, challenges, and recommendations in the development of the system, vertical farming management, and modern technologies approach

    Design a Low Voltage Energy Harvesting SoC System for Ultra-Low-Power Bio- medical Application

    No full text
    Abstract: This Paper presents a designing of low voltage energy harvesting SoC system based on Ultra-Low-Power Bio-medical applications. A novel technique (i.e., Genetic Algorithm) has chosen for designing the ultra-low-power circuit with a low voltage energy. This platform harvests ambient vibration energy as its power source, and is capable of self starting, and self-powered operation without the need of a battery. The proposed method consumes very little power, and is especially suitable for the environments, where ambient harvested power is very low. System modeling and analysis of the method will be developed using HSPICE software. The ultimate goal of this research work is to design a low voltage smart electronics circuit of SoC system. To implement our SoC design, the Analog/Digital software from Mentor Graphics will be considered. Experimental results will be presented at our next possible journal publication in future accordingly

    Review of Power Converter Impact of Electromagnetic Energy Harvesting Circuits and Devices for Autonomous Sensor Applications

    No full text
    The demand for power is increasing due to the rapid growth of the population. Therefore, energy harvesting (EH) from ambient sources has become popular. The reduction of power consumption in modern wireless systems provides a basis for the replacement of batteries with the electromagnetic energy harvesting (EMEH) approach. This study presents a general review of the EMEH techniques for autonomous sensor (ATS) applications. Electromagnetic devices show great potential when used to power such ATS technologies or convert mechanical energy to electrical energy. As its power source, this stage harvests ambient energy and features a self-starting and self-powered process without the use of batteries. Therefore, it consumes low power and is highly stable for harvesting energy from the environment with low ambient energy sources. The review highlights EMEH circuits, low power EMEH devices, power electronic converters, and controllers utilized in numerous applications, and described their impacts on energy conservation, benefits, and limitation. This study ultimately aims to suggest a smart, low-voltage electronic circuit for a low-power sensor that harvests electromagnetic energy. This review also focuses on various issues and suggestions of future EMEH for low power autonomous sensors

    An Aggregated Data Integration Approach to the Web and Cloud Platforms through a Modular REST-Based OPC UA Middleware

    No full text
    The Internet of Things (IoT) empowers the development of heterogeneous systems for various application domains using embedded devices and diverse data transmission protocols. Collaborative integration of these systems in the industrial domain leads to incompatibility and interoperability at different automation levels, requiring unified coordination to exchange information efficiently. The hardware specifications of these devices are resource-constrained, limiting their performance in resource allocation, data management, and remote process supervision. Hence, unlocking network capabilities with other domains such as cloud and web services is required. This study proposed a platform-independent middleware module incorporating the Open Platform Communication Unified Architecture (OPC UA) and Representational State Transfer (REST) paradigms. The object-oriented structure of this middleware allows information contextualization to address interoperability issues and offers aggregated data integration with other domains. RESTful web and cloud platforms were implemented to collect this middleware data, provide remote application support, and enable aggregated resource allocation in a database server. Several performance assessments were conducted on the developed system deployed in Raspberry Pi and Intel NUC PC, which showed acceptable platform resource utilization regarding CPU, bandwidth, and power consumption, with low service, update, and response time requirements. This integrated approach demonstrates an excellent cost-effective prospect for interoperable Machine-to-Machine (M2M) communication, enables remote process supervision, and offers aggregated bulk data management with wider domains
    corecore