24 research outputs found

    Effects of Vaccination with 10-Valent Pneumococcal Non-Typeable Haemophilus influenza Protein D Conjugate Vaccine (PHiD-CV) on the Nasopharyngeal Microbiome of Kenyan Toddlers.

    Get PDF
    OBJECTIVE: Pneumococcal conjugate vaccines reduce the prevalence of vaccine serotypes carried in the nasopharynx. Because this could alter carriage of other potential pathogens, we assessed the nasopharyngeal microbiome of children who had been vaccinated with 10-valent pneumococcal non-typeable Haemophilus influenzae protein-D conjugate vaccine (PHiD-CV). METHODS: Profiles of the nasopharyngeal microbiota of 60 children aged 12-59 months, who had been randomized to receive 2 doses of PHiD-CV (n=30) or Hepatitis A vaccine (n=30) 60 days apart, were constructed by 16S rRNA gene pyrosequencing of swab specimens collected before vaccination and 180 days after dose 1. RESULTS: Prior to vaccination, Moraxella catarrhalis (median of 12.3% of sequences/subject), Streptococcus pneumoniae (4.4%) and Corynebacterium spp. (5.6%) were the most abundant nasopharyngeal bacterial species. Vaccination with PHiD-CV did not significantly alter the species composition, abundance, or prevalence of known pathogens. Distinct microbiomes were identified based on the abundances of Streptococcus, Moraxella, and Haemophilus species. These microbiomes shifted in composition over the study period and were independent of age, sex, school attendance, antibiotic exposure, and vaccination. CONCLUSIONS: Vaccination of children with two doses of PHiD-CV did not significantly alter the nasopharyngeal microbiome. This suggests limited replacement carriage with pathogens other than non-vaccine strains of S. pneumoniae. TRIAL REGISTRATION: clinicaltrials.gov NCT01028326

    A phase I trial to evaluate the safety and pharmacokinetics of low-dose methotrexate as an anti-malarial drug in Kenyan adult healthy volunteers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous investigations indicate that methotrexate, an old anticancer drug, could be used at low doses to treat malaria. A phase I evaluation was conducted to assess the safety and pharmacokinetic profile of this drug in healthy adult male Kenyan volunteers.</p> <p>Methods</p> <p>Twenty five healthy adult volunteers were recruited and admitted to receive a 5 mg dose of methotrexate/day/5 days. Pharmacokinetics blood sampling was carried out at 2, 4, 6, 12 and 24 hours following each dose. Nausea, vomiting, oral ulcers and other adverse events were solicited during follow up of 42 days.</p> <p>Results</p> <p>The mean age of participants was 23.9 ± 3.3 years. Adherence to protocol was 100%. No grade 3 solicited adverse events were observed. However, one case of transiently elevated liver enzymes, and one serious adverse event (not related to the product) were reported. The maximum concentration (C<sub>max</sub>) was 160-200 nM and after 6 hours, the effective concentration (C<sub>eff</sub>) was <150 nM.</p> <p>Conclusion</p> <p>Low-dose methotraxate had an acceptable safety profile. However, methotrexate blood levels did not reach the desirable C<sub>eff </sub>of 250-400-nM required to clear malaria infection <it>in vivo</it>. Further dose finding and safety studies are necessary to confirm suitability of this drug as an anti-malarial agent.</p

    Temporal Association of Acute Hepatitis A and Plasmodium falciparum Malaria in Children

    Get PDF
    BACKGROUND: In sub-Saharan Africa, Plasmodium falciparum and hepatitis A (HAV) infections are common, especially in children. Co-infections with these two pathogens may therefore occur, but it is unknown if temporal clustering exists. MATERIALS AND METHODS: We studied the pattern of co-infection of P. falciparum malaria and acute HAV in Kenyan children under the age of 5 years in a cohort of children presenting with uncomplicated P. falciparum malaria. HAV status was determined during a 3-month follow-up period. DISCUSSION: Among 222 cases of uncomplicated malaria, 10 patients were anti-HAV IgM positive. The incidence of HAV infections during P. falciparum malaria was 1.7 (95% CI 0.81-3.1) infections/person-year while the cumulative incidence of HAV over the 3-month follow-up period was 0.27 (95% CI 0.14-0.50) infections/person-year. Children with or without HAV co-infections had similar mean P. falciparum asexual parasite densities at presentation (31,000/µL vs. 34,000/µL, respectively), largely exceeding the pyrogenic threshold of 2,500 parasites/µL in this population and minimizing risk of over-diagnosis of malaria as an explanation. CONCLUSION: The observed temporal association between acute HAV and P. falciparum malaria suggests that co-infections of these two hepatotrophic human pathogens may result from changes in host susceptibility. Testing this hypothesis will require larger prospective studies

    Similar efficacy and safety of artemether-lumefantrine (Coartem®) in African infants and children with uncomplicated falciparum malaria across different body weight ranges

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Artemisinin-based combination therapy, including artemether-lumefantrine (AL), is currently recommended for the treatment of uncomplicated <it>Plasmodium falciparum </it>malaria. The objectives of the current analysis were to compare the efficacy and safety of AL across different body weight ranges in African children, and to examine the age and body weight relationship in this population.</p> <p>Methods</p> <p>Efficacy, safety and pharmacokinetic data from a randomized, investigator-blinded, multicentre trial of AL for treatment of acute uncomplicated <it>P. falciparum </it>malaria in infants and children in Africa were analysed according to body weight group.</p> <p>Results</p> <p>The trial included 899 patients (intent-to-treat population 886). The modified intent-to-treat (ITT) population (n = 812) comprised 143 children 5 to < 10 kg, 334 children 10 to < 15 kg, 277 children 15 to < 25 kg, and 58 children 25 to < 35 kg. The 28-day PCR cure rate, the primary endpoint, was comparable across all four body weight groups (97.2%, 98.9%, 97.8% and 98.3%, respectively). There were no clinically relevant differences in safety or tolerability between body weight groups. In the three AL body weight dosing groups (5 to < 15 kg, 15 to < 25 kg and 25 to < 35 kg), 80% of patients were aged 10-50 months, 46-100 months and 90-147 months, respectively.</p> <p>Conclusion</p> <p>Efficacy of AL in uncomplicated falciparum malaria is similar across body weight dosing groups as currently recommended in the label with no clinically relevant differences in safety or tolerability. AL dosing based on body weight remains advisable.</p

    Spread of artemisinin resistance in Plasmodium falciparum malaria.

    Get PDF
    BACKGROUND: Artemisinin resistance in Plasmodium falciparum has emerged in Southeast Asia and now poses a threat to the control and elimination of malaria. Mapping the geographic extent of resistance is essential for planning containment and elimination strategies. METHODS: Between May 2011 and April 2013, we enrolled 1241 adults and children with acute, uncomplicated falciparum malaria in an open-label trial at 15 sites in 10 countries (7 in Asia and 3 in Africa). Patients received artesunate, administered orally at a daily dose of either 2 mg per kilogram of body weight per day or 4 mg per kilogram, for 3 days, followed by a standard 3-day course of artemisinin-based combination therapy. Parasite counts in peripheral-blood samples were measured every 6 hours, and the parasite clearance half-lives were determined. RESULTS: The median parasite clearance half-lives ranged from 1.9 hours in the Democratic Republic of Congo to 7.0 hours at the Thailand-Cambodia border. Slowly clearing infections (parasite clearance half-life >5 hours), strongly associated with single point mutations in the "propeller" region of the P. falciparum kelch protein gene on chromosome 13 (kelch13), were detected throughout mainland Southeast Asia from southern Vietnam to central Myanmar. The incidence of pretreatment and post-treatment gametocytemia was higher among patients with slow parasite clearance, suggesting greater potential for transmission. In western Cambodia, where artemisinin-based combination therapies are failing, the 6-day course of antimalarial therapy was associated with a cure rate of 97.7% (95% confidence interval, 90.9 to 99.4) at 42 days. CONCLUSIONS: Artemisinin resistance to P. falciparum, which is now prevalent across mainland Southeast Asia, is associated with mutations in kelch13. Prolonged courses of artemisinin-based combination therapies are currently efficacious in areas where standard 3-day treatments are failing. (Funded by the U.K. Department of International Development and others; ClinicalTrials.gov number, NCT01350856.)

    Comparison of HAV positive and negative patients presenting with uncomplicated <i>P. falciparum</i> malaria.

    No full text
    <p>Geometric mean parasitemia at baseline were</p>∞<p>31,000 (15,000–63,000) and</p>†<p>34,000 (24,000–47,000) when patients with high parasitemia are excluded.</p>#<p>T-test,</p><p>*Mann-Whitney test,</p>§<p>chi square test.</p

    Clustering of subjects by abundances of <i>Haemophilus spp</i>., <i>Streptococcus spp</i>., and <i>Moraxella spp</i>.

    No full text
    <p>Subjects were grouped by hierarchical clustering on the basis of species-level percent 16S rRNA sequence abundances. Percent abundances are proportional to gray scaling. The upper heatmap presents data for baseline nasopharyngeal microbiomes and the lower heatmap presents data 180 days after vaccination. Subjects were classified into three basic groups on the basis of this clustering: A. <i>Streptococcus</i> dominant; B) <i>Moraxella</i> dominant; and C) Mixed <i>Streptococcus/Haemophilus</i> dominant. Solid lines connecting the two heatmaps indicate individuals that changed from cluster A to cluster B. Dotted lines indicate subjects that moved from cluster B to either cluster A or C. Black and gray boxes adjacent to dendogram designate vaccination group (PHiD-CV: 10-valent pneumococcal non-typeable <i>H</i>. <i>influenzae</i> protein-D conjugate vaccine; HAV: Hepatitis A vaccine).</p
    corecore