15 research outputs found

    Toolkit for monitoring and evaluation of indoor residual spraying for visceral leishmaniasis control in the Indian subcontinent: application and results.

    Get PDF
    Background. We field tested and validated a newly developed monitoring and evaluation (M&E) toolkit for indoor residual spraying to be used by the supervisors at different levels of the national kala-azar elimination programs in Bangladesh, India and Nepal. Methods. Methods included document analysis, in-depth interviews, direct observation of spraying squads, and entomological-chemical assessments (bioassay, susceptibility test, chemical analysis of insecticide residues on sprayed surfaces, vector density measurements at baseline, and three follow-up surveys). Results. We found that the documentation at district offices was fairly complete; important shortcomings included insufficient training of spraying squads and supervisors, deficient spray equipment, poor spraying performance, lack of protective clothing, limited coverage of houses resulting in low bioavailability of the insecticide on sprayed surfaces, and reduced vector susceptibility to DDT in India, which limited the impact on vector densities. Conclusion. The M&E toolkit is a useful instrument for detecting constraints in IRS operations and to trigger timely response

    Susceptibility of field-collected Phlebotomus argentipes (Diptera: Psychodidae) sand flies from Bangladesh and Nepal to different insecticides

    No full text
    Abstract Background The sand fly Phlebotomus argentipes is the vector for visceral leishmaniasis (VL) in the Indian sub-continent. In Bangladesh since 2012, indoor residual spraying (IRS) was applied in VL endemic areas using deltamethrin. In Nepal, IRS was initiated in 1992 for VL vector control using lambda-cyhalothrin. Irrational use of insecticides may lead to vector resistance but very little information on this subject is available in both countries. The objective of this study was to generate information on the susceptibility of the vector sand fly, P. argentipes to insecticide, in support of the VL elimination initiative on the Indian sub-continent. Methods Susceptibility tests were performed using WHO test kits following the standard procedures regarding alpha cypermethrin (0.05%), deltamethrin (0.05%), lambda-cyhalothrin (0.05%), permethrin (0.75%), malathion (5%) and bendiocarb (0.1%) in six upazilas (sub-districts) in Bangladesh. In Nepal, the tests were performed for two insecticides: alpha cypermethrin (0.05%) and deltamethrin (0.05%). Adult P. argentipes sand flies were collected in Bangladesh from six VL endemic upazilas (sub-districts) and in Nepal from three endemic districts using manual aspirators. Results The results show that VL vectors were highly susceptible to all insecticides at 60 minutes of exposure in both countries. In Bangladesh, corrected mortality was 100% at 15 minutes as well as 30 minutes of exposure. The study sites in Nepal, however, showed some diverse results, with a mortality rate less than 90% for 15 minutes of exposure with alpha cypermethrin and deltamethrin in two districts but was above 95% after 30 minutes of exposure. Conclusions These results suggest that the insecticides tested can still be used in the national programmes of Bangladesh and Nepal. However, insecticide rotation should be performed to mitigate the possible development of insecticide resistance. Periodic susceptibility tests should be performed by the countries to get timely alerts regarding insecticide resistance

    Indoor residual spraying for kala-azar vector control in Bangladesh: A continuing challenge.

    No full text
    BACKGROUND:Visceral leishmaniasis (VL) in the Indian subcontinent is a fatal disease if left untreated. Between 1994 to 2013, the Ministry of Health of Bangladesh reported 1,09,266 cases of VL and 329 VL related deaths in 37 endemic districts. Indoor residual spraying (IRS) using dichlorodiphenyltrichloroethane (DDT) was used by the national programme in the 1960s to control malaria. Despite findings of research trials demonstrating that the synthetic pyrethroid deltamethrin 5 WP was very effective at reducing vector densities, no national VL vector control operations took place in Bangladesh between 1999 to early 2012. In 2012, IRS using deltamethrin 5 WP was re-introduced by the national programme, which consisted of pre-monsoon spraying in eight highly endemic sub-districts (upazilas). The present study aims to evaluate the effectiveness of IRS on VL vectors, as well as the process and performance of the spraying activities by national programme staff. METHODS:Five highly endemic upazilas of Mymensingh district were purposively selected (Fulbaria, Trishal, Mukthagacha, Gaforgaon and Bhaluka) to conduct the present study using the WHO/TDR monitoring and evaluation tool kit. IRS operations, conducted by 136 squads/teams, and 544 spraymen, were observed using check lists and questionnaires included in the WHO/TDR monitoring and evaluation tool kit. A household (HH) acceptability survey of IRS was conducted in all study areas using a structured questionnaire in 600 HHs. To measure the efficacy of IRS, pre-IRS (two weeks prior) and post-IRS (at one and five months after), vector density was measured using CDC light traps for two consecutive nights. Bioassays, using the WHO cone-method, were carried out in 80 HHs (40 sprayed and 40 unsprayed) to measure the effectiveness of the insecticide on sprayed surfaces. RESULTS:Of the 544 spraymen interviewed pre-IRS, 60%, 3% and 37% had received training for one, two and three days respectively. During spraying activities, 64% of the spraying squads had a supervisor in 4 upazilas but only one upazila (Mukthagacha) achieved 100% supervision of squads. Overall, 72.8% of the spraying squads in the study upazilas had informed HHs members to prepare their houses prior to spraying. The required personal protective equipment was not provided by the national programme during our observations and the spraying techniques used by all sprayers were sub-standard compared to the standard procedure mentioned in the M&E toolkit. In the HH interviews, 94.8% of the 600 respondents said that all their living rooms and cattle sheds had been sprayed. Regarding the effectiveness measurements (i.e. reduction of vector densities), a total of 4132 sand flies were trapped in three intervals, of which 3310 (80.1%) were P. argentipes; 46.5% (1540) males and 53.5% (1770) females. At one month post-IRS, P. argentipes densities were reduced by 22.5% but the 5 months post-IRS reduction was only 6.4% for both male and female. The bioassay tests showed a mean corrected mortality of P. argentipes sand flies at one month post-IRS of 87.3% which dropped to 74.5% at 4 months post-IRS in three upazilas, which is below the WHO threshold level (80%). CONCLUSION:The national programme should conduct monitoring and evaluation activities to ensure high quality of IRS operations as a pre-condition for achieving a fast and sustained reduction in vector densities. This will continue to be important during the maintenance phase of VL elimination on the Indian subcontinent. Further research is needed to determine other suitable vector control option(s) when the case numbers are very low

    Control of Phlebotomus argentipes (Diptera: Psychodidae) sand fly in Bangladesh: a cluster randomized controlled trial

    No full text
    Background: A number of studies on visceral leishmaniasis (VL) vector control have been conducted during the past decade, sometimes came to very different conclusion. The present study on a large sample investigated different options which are partially unexplored including: (1) indoor residual spraying (IRS) with alpha cypermethrin 5WP; (2) long lasting insecticide impregnated bed-net (LLIN); (3) impregnation of local bed-nets with slow release insecticide K-O TAB 1-2-3 (KOTAB); (4) insecticide spraying in potential breeding sites outside of house using chlorpyrifos 20EC (OUT) and different combinations of the above. Methods: The study was a cluster randomized controlled trial where 3089 houses from 11 villages were divided into 10 sections, each section with 6 clusters and each cluster having approximately 50 houses. Based on vector density (males plus females) during baseline survey, the 60 clusters were categorized into 3 groups: (1) high, (2) medium and (3) low. Each group had 20 clusters. From these three groups, 6 clusters (about 300 households) were randomly selected for each type of intervention and control arms. Vector density was measured before and 2, 4, 5, 7, 11, 14, 15, 18 and 22 months after intervention using CDC light traps. The impact of interventions was measured by using the difference-in-differences regression model. Results: A total of 17,434 sand flies were collected at baseline and during the surveys conducted over 9 months following the baseline measurements. At baseline, the average P. argentipes density per household was 10.6 (SD = 11.5) in the control arm and 7.3 (SD = 8.46) to 11.5 (SD = 20.2) in intervention arms. The intervention results presented as the range of percent reductions of sand flies (males plus females) and rate ratios in 9 measurements over 22 months. Among single type interventions, the effect of IRS with 2 rounds of spraying (applied by the research team) ranged from 13% to 75% reduction of P. argentipes density compared to the control arm (rate-ratio [RR] ranged from 0.25 to 0.87). LLINs caused a vector reduction of 9% to 78% (RR, 0.22 to 0.91). KOTAB reduced vectors by 4% to 73% (RR, 0.27 to 0.96). The combination of LLIN and OUT led to a vector reduction of 26% to 86% (RR, 0.14 to 0.74). The reduction for the combination of IRS and OUT was 8% to 88% (RR, 0.12 to 0.92). IRS and LLIN combined resulted in a vector reduction of 13% to 85% (RR, 0.15 to 0.77). The IRS and KOTAB combination reduced vector densities by 16% to 86% (RR, 0.14 to 0.84). Some intermediate measurements for KOTAB alone and for IRS plus LLIN; and IRS plus KOTAB were not statistically significant. The bioassays on sprayed surfaces or netting materials showed favourable results (>80% mortality) for 22 months (IRS tested for 12 months). In the KOTAB, a gradual decline was observed after 6 months. Conclusions: LLIN and OUT was the best combination to reduce VL vector densities for 22 months or longer. Operationally, this is much easier to apply than IRS. A cost analysis of the preferred tools will follow. The relationship between vector density (males plus females) and leishmaniasis incidence should be investigated, and this will require estimates of the Entomological Inoculation Rate

    Study design.

    No full text
    <p>[Note: <u>Interventions:</u> IRS = A; LLIN = B; Local bednet impregnated with KO TAB 1-2-3 = C; Possible breeding places (outside of home) sprayed with Clorophyrephos = D; A+B = E; A+C = F; B+D = G; C+D = H; A+D = I and J = Control (no intervention)]</p

    Control of <i>Phlebotomus argentipes</i> (Diptera: Psychodidae) sand fly in Bangladesh: A cluster randomized controlled trial

    No full text
    <div><p>Background</p><p>A number of studies on visceral leishmaniasis (VL) vector control have been conducted during the past decade, sometimes came to very different conclusion. The present study on a large sample investigated different options which are partially unexplored including: (1) indoor residual spraying (IRS) with alpha cypermethrin 5WP; (2) long lasting insecticide impregnated bed-net (LLIN); (3) impregnation of local bed-nets with slow release insecticide K-O TAB 1-2-3 (KOTAB); (4) insecticide spraying in potential breeding sites outside of house using chlorpyrifos 20EC (OUT) and different combinations of the above.</p><p>Methods</p><p>The study was a cluster randomized controlled trial where 3089 houses from 11 villages were divided into 10 sections, each section with 6 clusters and each cluster having approximately 50 houses. Based on vector density (males plus females) during baseline survey, the 60 clusters were categorized into 3 groups: (1) high, (2) medium and (3) low. Each group had 20 clusters. From these three groups, 6 clusters (about 300 households) were randomly selected for each type of intervention and control arms. Vector density was measured before and 2, 4, 5, 7, 11, 14, 15, 18 and 22 months after intervention using CDC light traps. The impact of interventions was measured by using the difference-in-differences regression model.</p><p>Results</p><p>A total of 17,434 sand flies were collected at baseline and during the surveys conducted over 9 months following the baseline measurements. At baseline, the average <i>P</i>. <i>argentipes</i> density per household was 10.6 (SD = 11.5) in the control arm and 7.3 (SD = 8.46) to 11.5 (SD = 20.2) in intervention arms. The intervention results presented as the range of percent reductions of sand flies (males plus females) and rate ratios in 9 measurements over 22 months. Among single type interventions, the effect of IRS with 2 rounds of spraying (applied by the research team) ranged from 13% to 75% reduction of <i>P</i>. <i>argentipes</i> density compared to the control arm (rate-ratio [RR] ranged from 0.25 to 0.87). LLINs caused a vector reduction of 9% to 78% (RR, 0.22 to 0.91). KOTAB reduced vectors by 4% to 73% (RR, 0.27 to 0.96). The combination of LLIN and OUT led to a vector reduction of 26% to 86% (RR, 0.14 to 0.74). The reduction for the combination of IRS and OUT was 8% to 88% (RR, 0.12 to 0.92). IRS and LLIN combined resulted in a vector reduction of 13% to 85% (RR, 0.15 to 0.77). The IRS and KOTAB combination reduced vector densities by 16% to 86% (RR, 0.14 to 0.84). Some intermediate measurements for KOTAB alone and for IRS plus LLIN; and IRS plus KOTAB were not statistically significant. The bioassays on sprayed surfaces or netting materials showed favourable results (>80% mortality) for 22 months (IRS tested for 12 months). In the KOTAB, a gradual decline was observed after 6 months.</p><p>Conclusions</p><p>LLIN and OUT was the best combination to reduce VL vector densities for 22 months or longer. Operationally, this is much easier to apply than IRS. A cost analysis of the preferred tools will follow. The relationship between vector density (males plus females) and leishmaniasis incidence should be investigated, and this will require estimates of the Entomological Inoculation Rate.</p></div
    corecore