312 research outputs found

    Artificially induced changes of butterfly wing colour patterns: dynamic signal interactions in eyespot development

    Get PDF
    Eyespot formation in butterfly wings has been explained by the concentration gradient model. However, this model has recently been questioned, and dynamic interactions between the black-inducing signal and its inhibitory signal have been proposed. Here, the validity of these models was examined using a nymphalid butterfly Junonia almana. Early focal damage to the major eyespots often made them smaller, whereas the late damage made the outer ring larger and the inner ring smaller in a single eyespot. Non-focal damage at the outer ring not only attracted the whole eyespot structure toward the damaged site but also reduced the overall size of the eyespot. Surprisingly, a reduction of the major eyespot was accompanied by an enlargement of the associated miniature eyespots. These results demonstrate limitations of the conventional gradient model and support a dynamic interactive nature of morphogenic signals for colour-pattern determination in butterfly wings

    Effect of twisted fin array in a triple-tube latent heat storage system during the charging mode

    Get PDF
    Data Availability Statement: The data will be available on request.Copyright: © 2021 by the authors. This study aims to assess the effect of adding twisted fins in a triple-tube heat exchanger used for latent heat storage compared with using straight fins and no fins. In the proposed heat exchanger, phase change material (PCM) is placed between the middle annulus while hot water is passed in the inner tube and outer annulus in a counter-current direction, as a superior method to melt the PCM and store the thermal energy. The behavior of the system was assessed regarding the liquid fraction and temperature distributions as well as charging time and energy storage rate. The results indicate the advantages of adding twisted fins compared with those of using straight fins. The effect of several twisted fins was also studied to discover its effectiveness on the melting rate. The results demonstrate that deployment of four twisted fins reduced the melting time by 18% compared with using the same number of straight fins, and 25% compared with the no-fins case considering a similar PCM mass. Moreover, the melting time for the case of using four straight fins was 8.3% lower than that compared with the no-fins case. By raising the fins’ number from two to four and six, the heat storage rate rose 14.2% and 25.4%, respectively. This study presents the effects of novel configurations of fins in PCM-based thermal energy storage to deliver innovative products toward commercialization, which can be manufactured with additive manufacturing.Funding: This research received no external funding

    Solidification enhancement in a multi-tube latent heat storage system for efficient and economical production: Effect of number, position and temperature of the tubes

    Get PDF
    Copyright: © 2021 by the authors. Thermal energy storage is an important component in energy units to decrease the gap between energy supply and demand. Free convection and the locations of the tubes carrying the heat-transfer fluid (HTF) have a significant influence on both the energy discharging potential and the buoyancy effect during the solidification mode. In the present study, the impact of the tube position was examined during the discharging process. Liquid-fraction evolution and energy removal rate with thermo-fluid contour profiles were used to examine the performance of the unit. Heat exchanger tubes are proposed with different numbers and positions in the unit for various cases including uniform and non-uniform tubes distribution. The results show that moving the HTF tubes to medium positions along the vertical direction is relatively better for enhancing the solidification of PCM with multiple HTF tubes. Repositioning of the HTF tubes on the left side of the unit can slightly improve the heat removal rate by about 0.2 in the case of p5-u-1 and decreases by 1.6% in the case of p5-u-2. It was found also that increasing the distance between the tubes in the vertical direction has a detrimental effect on the PCM solidification mode. Replacing the HTF tubes on the left side of the unit negatively reduces the heat removal rate by about 1.2 and 4.4%, respectively. Further, decreasing the HTF temperature from 15◦C to 10 and 5◦C can increase the heat removal rate by around 7 and 16%, respectively. This paper indicates that the specific concern to the HTF tube arrangement should be made to improve the discharging process attending free convection impact in phase change heat storage
    corecore