5 research outputs found

    Evaluation of Phenotypic Variations in the Antibiotics Sensitivity of Escherichia Coli by Repeated Exposure

    Get PDF
    Enterobacteriaceae, in particular Escherichia coli, are habitual residents of the gastrointestinal tract, capable of causing a large number of infections. The MIC varies according to the bacterial strains and the antibiotics used, hence the need to carry out antibiotic sensitivity tests. The objective of this study is to evaluate the behavior of Escherichia coli after repeated exposure to the same antibiotic to demonstrate a possible correlation between excessive intake of antibiotics and bacterial resistance. A prospective and descriptive study was carried out in the Laboratory of Microbiology of Fundamental and Applied Biochemistry (Faculty of Sciences Antananarivo) during the month of November 2019. The strains studied were the reference strain Escherichia coli ATCC 25922 provided by the Laboratory and two clinical strains from the Microbiology Laboratory of the Joseph Ravoahangy Andrianavalona University Hospital Center (CHU JRA) Antananarivo. Repeated exposure to Tobramycin and Ofloxacin of these strains were performed. The results of our study showed that most E. coli is exposed to the antibiotic, the more it develops resistance. The evolution of E. coli\u27s sensitivity is different in the presence of Tobramycin with MICs up to 4 times the starting value while in the presence of Ofloxacin, the MIC increases to 125 times the initial value. This difference may be due to the different target of the antibiotic which causes the bacteria to develop variable mechanisms to escape it. Key words: E. coli - MIC - antibiotics - repeated exposur

    Evaluation of Phenotypic Variations in the Antibiotics Sensitivity of Escherichia Coli by Repeated Exposure

    Get PDF
    Enterobacteriaceae, in particular Escherichia coli, are habitual residents of the gastrointestinal tract, capable of causing a large number of infections. The MIC varies according to the bacterial strains and the antibiotics used, hence the need to carry out antibiotic sensitivity tests. The objective of this study is to evaluate the behavior of Escherichia coli after repeated exposure to the same antibiotic to demonstrate a possible correlation between excessive intake of antibiotics and bacterial resistance. A prospective and descriptive study was carried out in the Laboratory of Microbiology of Fundamental and Applied Biochemistry (Faculty of Sciences Antananarivo) during the month of November 2019. The strains studied were the reference strain Escherichia coli ATCC 25922 provided by the Laboratory and two clinical strains from the Microbiology Laboratory of the Joseph Ravoahangy Andrianavalona University Hospital Center (CHU JRA) Antananarivo. Repeated exposure to Tobramycin and Ofloxacin of these strains were performed. The results of our study showed that most E. coli is exposed to the antibiotic, the more it develops resistance. The evolution of E. coli's sensitivity is different in the presence of Tobramycin with MICs up to 4 times the starting value while in the presence of Ofloxacin, the MIC increases to 125 times the initial value. This difference may be due to the different target of the antibiotic which causes the bacteria to develop variable mechanisms to escape it. Key words: E. coli - MIC - antibiotics - repeated exposur

    African Plant-Based Natural Products with Antivirulence Activities to the Rescue of Antibiotics

    No full text
    The worldwide emergence of antibiotic-resistant bacteria and the thread of widespread superbug infections have led researchers to constantly look for novel effective antimicrobial agents. Within the past two decades, there has been an increase in studies attempting to discover molecules with innovative properties against pathogenic bacteria, notably by disrupting mechanisms of bacterial virulence and/or biofilm formation which are both regulated by the cell-to-cell communication mechanism called ‘quorum sensing’ (QS). Certainly, targeting the virulence of bacteria and their capacity to form biofilms, without affecting their viability, may contribute to reduce their pathogenicity, allowing sufficient time for an immune response to infection and a reduction in the use of antibiotics. African plants, through their huge biodiversity, present a considerable reservoir of secondary metabolites with a very broad spectrum of biological activities, a potential source of natural products targeting such non-microbicidal mechanisms. The present paper aims to provide an overview on two main aspects: (i) succinct presentation of bacterial virulence and biofilm formation as well as their entanglement through QS mechanisms and (ii) detailed reports on African plant extracts and isolated compounds with antivirulence properties against particular pathogenic bacteria

    The Xanthophyll Carotenoid Lutein Reduces the Invasive Potential of Pseudomonas aeruginosa and Increases Its Susceptibility to Tobramycin

    No full text
    Recently, the xanthophyll carotenoid lutein has been qualified as a potential quorum sensing (QS) and biofilm inhibitor against Pseudomonas aeruginosa. To address the potential of this xanthophyll compound as a relevant antivirulence agent, we investigated in depth its impact on the invasion capabilities and aggressiveness of P. aeruginosa PAO1, which rely on the bacterial ability to build and maintain protective barriers, use different types of motilities and release myriad virulence factors, leading to host cell and tissue damages. Our data, obtained on the PAO1 strain, indicate that all-trans lutein (Lut; 22 µM) disrupts biofilm formation and disorganizes established biofilm structure without affecting bacterial viability, while improving the bactericidal activity of tobramycin against biofilm-encapsulated PAO1 cells. Furthermore, this xanthophyll affects PAO1 twitching and swarming motilities while reducing the production of the extracellular virulence factors pyocyanin, elastase and rhamnolipids as well as the expression of the QS-regulated lasB and rhlA genes without inhibiting the QS-independent aceA gene. Interestingly, the expression of the QS regulators rhlR/I and lasR/I is significantly reduced as well as that of the global virulence factor regulator vfr, which is suggested to be a major target of Lut. Finally, an oxidative metabolite of Lut, 3′-dehydrolutein, induces a similar inhibition phenotype. Taken together, lutein-type compounds represent potential agents to control the invasive ability and antibiotic resistance of P. aeruginosa
    corecore