9 research outputs found

    Dendrimer-based Nanoparticle for Dye Sensitized Solar Cells with Improved Efficiency

    Get PDF
    Dye sensitized solar cells were fabricated with DyLight680 (DL680) dye and its corresponding europium conjugated dendrimer, DL680-Eu-G5PAMAM, to study the effect of europium on the current and voltage characteristics of the DL680 dye sensitized solar cell. The dye samples were characterized by using Absorption Spectroscopy, Emission Spectroscopy, Fluorescence lifetime and Fourier Transform Infrared measurements. Transmission electron microscopy imaging was carried out on the DL680-Eu-G5PAMAM dye and DL680-Eu-G5PAMAM dye sensitized titanium dioxide nanoparticles to analyze the size of the dye molecules and examine the interaction of the dye with titanium dioxide nanoparticles. The DL680-Eu-G5PAMAM dye sensitized solar cells demonstrated an enhanced solar-to-electric energy conversion of 0.32% under full light illumination (100 mWcm−2, AM 1.5 Global) in comparison with that of DL680 dye sensitized cells which recorded an average solar-to-electric energy conversion of only 0.19%. The improvement of the efficiency could be due to the presence of the europium that enhances the propensity of dye to absorb sunlight

    Concentration-dependent oligomerization of an alpha-helical antifreeze polypeptide makes it hyperactive

    Get PDF
    A supersoluble 40-residue type I antifreeze protein (AFP) was discovered in a righteye flounder, the barfin plaice (bp). Unlike all other AFPs characterized to date, bpAFP transitions from moderately-active to hyperactive with increasing concentration. At sub-mM concentrations, bpAFP bound to pyramidal planes of ice to shape it into a bi-pyramidal hexagonal trapezohedron, similarly to the other moderately-active AFPs. At sub-mM concentrations, bpAFP uniquely underwent further binding to the whole ice crystal surface including the basal planes. The latter caused a bursting ice crystal growth normal to c-axis, 3 degrees C of high thermal hysteresis, and alteration of an ice crystal into a smaller lemon-shaped morphology, all of which are well-known properties of hyperactive AFPs. Analytical ultracentrifugation showed this activity transition is associated with oligomerization to form tetramer, which might be the forerunner of a naturally occurring four-helix-bundle AFP in other flounders

    Polypentagonal ice-like water networks emerge solely in an activity-improved variant of ice-binding protein

    Get PDF
    Polypentagonal water networks were recently observed in a protein capable of binding to ice crystals, or ice-binding protein (IBP). To examine such water networks and clarify their role in ice-binding, we determined X-ray crystal structures of a 65-residue defective isoform of a Zoarcidae-derived IBP (wild type, WT) and its five single mutants (A20L, A20G, A20T, A20V, and A20I). Polypentagonal water networks composed of similar to 50 semiclathrate waters were observed solely on the strongest A20I mutant, which appeared to include a tetrahedral water cluster exhibiting a perfect position match to the (1010) first prism plane of a single ice crystal. Inclusion of another symmetrical water cluster in the poly-pentagonal network showed a perfect complementarity to the waters constructing the (2021) pyramidal ice plane. The order of ice-binding strength was A20L < A20G < WT < A20T < A20V < A20I, where the top three mutants capable of binding to the first prism and the pyramidal ice planes commonly contained a bifurcated gamma-CH3 group. These results suggest that a fine-tuning of the surface of Zoarcidae-derived IBP assisted by a side-chain group regulates the holding property of its polypentagonal water network, the function of which is to freeze the host protein to specific ice planes

    Fish-Derived Antifreeze Proteins and Antifreeze Glycoprotein Exhibit a Different Ice-Binding Property with Increasing Concentration

    No full text
    The concentration of a protein is highly related to its biochemical properties, and is a key determinant for its biotechnological applications. Antifreeze proteins (AFPs) and antifreeze glycoproteins (AFGPs) are structurally diverse macromolecules that are capable of binding to embryonic ice crystals below 0 degrees C, making them useful as protectants of ice-block formation. In this study, we examined the maximal solubility of native AFP I-III and AFGP with distilled water, and evaluated concentration dependence of their ice-binding property. Approximately 400 mg/mL (AFP I), 200 mg/mL (AFP II), 100 mg/mL (AFP III), and >1800 mg/mL (AFGP) of the maximal solubility were estimated, and among them AFGP's solubility is much higher compared with that of ordinary proteins, such as serum albumin (similar to 500 mg/mL). The samples also exhibited unexpectedly high thermal hysteresis values (2-3 degrees C) at 50-200 mg/mL. Furthermore, the analysis of fluorescence-based ice plane affinity showed that AFP II binds to multiple ice planes in a concentration-dependent manner, for which an oligomerization mechanism was hypothesized. The difference of concentration dependence between AFPs and AFGPs may provide a new clue to help us understand the ice-binding function of these proteins

    Polypentagonal ice-like water networks emerge solely in an activity-improved variant of ice-binding protein

    No full text
    Recently, polypentagonal water networks were observed in a protein capable of binding to ice crystals, or ice-binding protein (IBP). To examine such water networks and clarify their role in ice-binding, we determined X-ray crystal structures of a 65-residue defective isoform of an IBP (wild type, WT) and its 5 single mutants (A20L, A20G, A20T, A20V, and A20I). Polypentagonal water networks composed of approximately 50 semi-clathrate waters were solely observed on the strongest A20I mutant, which appeared to include a tetrahedral water cluster exhibiting perfect position match to the (10-10) 1st prism plane of a single ice crystal. Inclusion of another symmetrical water cluster in the polypentagonal network showed a perfect complementarity to the waters constructing the (20-21) pyramidal ice plane. The order of ice-binding strength was A20L < A20G < WT< A20T < A20V < A20I, where the top 3 mutants capable of binding to the 1st 12 prism and the pyramidal ice planes commonly contained a bifurcated γ-CH313 -group. These results suggest that a fine-tuning of the protein surface assisted by a side-chain group regulates the holding property of the polypentagonal water network, whose function is to freeze the host protein to specific ice planes
    corecore