137 research outputs found

    A low-power geometric mapping co-processor for high-speed graphics application

    No full text
    In this article we present a novel design of a low-power geometric mapping co-processor that can be used for high-performance graphics system. The processor can carry out any single or a combination of transformations belonging to affine transformation family ranging from 1-D to 3-D. It allows interactive operations which can be defined either by a user (allowing it to be a stand-alone geometric transformation processor) or by a host processor (allowing it to be a co-processor to accelerate certain graphics operations). It occupies a silicon area of 6 mm2 and consumes 40 mW power when synthesized with 0.25?m technology

    CORDIC Based Array Architecture for Affine Transformation of Images

    No full text
    In this paper a multiplierless array architecture of Affine transformation is proposed. The array architecture utilizes CoOrdinate Rotation DIgital Computer (CORDIC) arithmetic unit as the basic Processing Element (PE). To construct the architecture two types of CORDIC units viz. the circular and linear are used. The architecture is flexible and can be configured according to the specification of the user. Due to its multiplierless organization the array architecture is expected to consume less silicon area and power compared to that of the multiplier-based designs

    A 64-point Fourier transform chip for high-speed wireless LAN application using OFDM

    No full text
    In this article, we present a novel fixed-point 16-bit word-width 64-point FFT/IFFT processor developed primarily for the application in the OFDM based IEEE 802.11a Wireless LAN (WLAN) baseband processor. The 64-point FFT is realized by decomposing it into a 2-D structure of 8-point FFTs. This approach reduces the number of required complex multiplications compared to the conventional radix-2 64-point FFT algorithm. The complex multiplication operations are realized using shift-and-add operations. Thus, the processor does not use any 2-input digital multiplier. It also does not need any RAM or ROM for internal storage of coefficients. The proposed 64-point FFT/IFFT processor has been fabricated and tested successfully using our in-house 0.25 ?m BiCMOS technology. The core area of this chip is 6.8 mm2. The average dynamic power consumption is 41 mW @ 20 MHz operating frequency and 1.8 V supply voltage. The processor completes one parallel-to-parallel (i. e., when all input data are available in parallel and all output data are generated in parallel) 64-point FFT computation in 23 cycles. These features show that though it has been developed primarily for application in the IEEE 802.11a standard, it can be used for any application that requires fast operation as well as low power consumption

    A VLSI Array Architecture for Realization of DFT, DHT, DCT and DST

    No full text
    A unified array architecture is described for computation of DFT, DHT, DCT and DST using a modified CORDIC (CoOrdinate Rotation DIgital Computer) arithmetic unit as the basic Processing Element (PE). All these four transforms can be computed by simple rearrangement of input samples. Compared to five other existing architectures, this one has the advantage in speed in terms of latency and throughput. Moreover, the simple local neighborhood interprocessor connections make it convenient for VLSI implementation. The architecture can be extended to compute transformation of longer length by judicially cascading the modules of shorter transformation length which will be suitable for Wafer Scale Integration (WSI). CORDIC is designed using Transmission Gate Logic (TGL) on sea of gates semicustom environment. Simulation results show that this architecture may be a suitable candidate for low power/low voltage applications

    A VLSI Array Architecture for Hough Transform

    No full text
    In this article, an asynchronous array architecture for straight line Hough Transform (HT) is proposed using a scaling free modified CORDIC (Co-Ordinate Rotation Digital Computer) unit as a basic Processing Element (PE). It exhibits four-fold angle parallelism by dividing the Hough space into four subspaces to reduce the computation burden to 25 % of the conventional requirements. A distributed accumulator arrangement scheme is adopted to ensure conflict free voting operation. The architecture is then extended to compute circular and elliptic HT given their centers and orientations. Compared to some other existing architectures, this one exhibits higher computation speed

    New virtually scaling free adaptive CORDIC rotator

    No full text
    In this article we propose a novel CORDIC rotator algorithm that eliminates the problems of scale factor compensation and limited range of convergence associated with the classical CORDIC algorithm. In our scheme, depending on the target angle or the initial coordinate of the vector, a scaling by 1 or 1/?2 is needed that can be realised with minimal hardware. The proposed CORDIC rotator adaptively selects appropriate iteration steps and converges to the final result by executing 50% less number of iterations on an average compared to that required for the classical CORDIC. Unlike classical CORDIC, the final value of the scale factor is completely independent of number of executed iterations. Based on the proposed algorithm, a 16-bit pipelined CORDIC rotator implementation has been described. The silicon area of the fabricated pipelined CORDIC rotator core is 2.73 mm2. This is equivalent to 38 k inverter gates in IHP in-house 0.25 ?m BiCMOS technology. The average dynamic power consumption of the fabricated CORDIC rotator is 17 mW @ 2.5 V supply and 20Msps throughput. Currently, this CORDIC rotator is used as a part of the baseband processor for a project that aims to design a single-chip wireless modem compliant with IEEE 802.11a and Hiperlan/2

    A 16-bit CORDIC rotator for high-performance wireless LAN

    No full text
    In this paper we propose a novel 16-bit low power CORDIC rotator that is used for high-speed wireless LAN. The algorithm converges to the final target angle by adaptively selecting appropriate iteration steps while keeping the scale factor virtually constant. The VLSI architecture of the proposed design eliminates the entire arithmetic hardware in the angle approximation datapath and reduces the number of iterations by 50% on an average. The cell area of the processor is 0.7 mm2 and it dissipates 7 mW power at 20 MHz frequency
    • 

    corecore