9 research outputs found

    Simulations of a Circulating Fluidized Bed Chemical Looping Combustion System Utilizing Gaseous Fuel

    No full text
    Numerical studies using Computational Fluid Dynamics (CFD) have been carried out for a complete circulating fluidized bed chemical looping combustor described in the literature (Abad et al., 2006 Fuel 85, 1174-1185). There have been extensive experimental studies in Chemical Looping Combustion (CLC), however CFD simulations of this concept are quite limited. The CLC experiments that were simulated used methane as fuel. A 2-D continuum model was used to describe both the gas and solid phases. Detailed sub-models to account for fluid-particle and particleparticle interaction forces were included. Global models of fuel and carrier chemistry were utilized. The results obtained from CFD were compared with experimental outlet species concentrations, solid circulation rates, solid mass distribution in the reactors, and leakage and dilution rates. The transient CFD simulations provided a reasonable match with the reported experimental data

    Simulations of a Circulating Fluidized Bed Chemical Looping Combustion System Utilizing Gaseous Fuel

    Get PDF
    Numerical studies using Computational Fluid Dynamics (CFD) have been carried out for a complete circulating fluidized bed chemical looping combustor described in the literature (Abad et al., 2006 Fuel 85, 1174-1185). There have been extensive experimental studies in Chemical Looping Combustion (CLC), however CFD simulations of this concept are quite limited. The CLC experiments that were simulated used methane as fuel. A 2-D continuum model was used to describe both the gas and solid phases. Detailed sub-models to account for fluid-particle and particleparticle interaction forces were included. Global models of fuel and carrier chemistry were utilized. The results obtained from CFD were compared with experimental outlet species concentrations, solid circulation rates, solid mass distribution in the reactors, and leakage and dilution rates. The transient CFD simulations provided a reasonable match with the reported experimental data

    Solar Fuels via Two-Step Thermochemical Redox Cycles

    No full text
    With the advent of green technologies, solar fuel has gained particular interest that helps in producing syngas which is the primary feedstock for many of the synthetic chemicals using emissions (CO2 and H2O). Thermochemical redox cycles use metal oxides as oxygen carriers that are capable of oxygen diffusion during continuous reduction and oxidation cycles. In the chapter, the focus has been derived in many aspects such as metal oxides and their evolution, reactor design and their scope of large-scale modularity, and lastly its application in fuel, chemicals and power plants. The chapter also highlights the system analysis for different chemicals, their techno-economic feasibility, and viability
    corecore