18 research outputs found

    Fisetin glycosides synthesized by cyclodextrin glycosyltransferase from Paenibacillus sp. RB01: characterization, molecular docking, and antioxidant activity

    Get PDF
    Fisetin is a flavonoid that exhibits high antioxidant activity and is widely employed in the pharmacological industries. However, the application of fisetin is limited due to its low water solubility. In this study, glycoside derivatives of fisetin were synthesized by an enzymatic reaction using cyclodextrin glycosyltransferase (CGTase) from Paenibacillus sp. RB01 in order to improve the water solubility of fisetin. Under optimal conditions, CGTase was able to convert more than 400 mg/L of fisetin to its glycoside derivatives, which is significantly higher than the previous biosynthesis using engineered E. coli. Product characterization by HPLC and LC-MS/MS revealed that the transglycosylated products consisted of at least five fisetin glycoside derivatives, including fisetin mono-, di- and triglucosides, as well as their isomers. Enzymatic analysis by glucoamylase and α-glucosidase showed that these fisetin glycosides were formed by α-1,4-glycosidic linkages. Molecular docking demonstrated that there are two possible binding modes of fisetin in the enzyme active site containing CGTase-glysosyl intermediate, in which O7 and O4’ atoms of fisetin positioned close to the C1 of glycoside donor, corresponding to the isomers of the obtained fisetin monoglucosides. In addition, the water solubility and the antioxidant activity of the fisetin monoglucosides were tested. It was found that their water solubility was increased at least 800 times when compared to that of their parent molecule while still maintaining the antioxidant activity. This study revealed the potential application of CGTase to improve the solubility of flavonoids

    Integration of In Silico Strategies for Drug Repositioning towards P38α Mitogen-Activated Protein Kinase (MAPK) at the Allosteric Site

    No full text
    P38α mitogen-activated protein kinase (p38α MAPK), one of the p38 MAPK isoforms participating in a signaling cascade, has been identified for its pivotal role in the regulation of physiological processes such as cell proliferation, differentiation, survival, and death. Herein, by shedding light on docking- and 100-ns dynamic-based screening from 3210 FDA-approved drugs, we found that lomitapide (a lipid-lowering agent) and nilotinib (a Bcr-Abl fusion protein inhibitor) could alternatively inhibit phosphorylation of p38α MAPK at the allosteric site. All-atom molecular dynamics simulations and free energy calculations including end-point and QM-based ONIOM methods revealed that the binding affinity of the two screened drugs exhibited a comparable level as the known p38α MAPK inhibitor (BIRB796), suggesting the high potential of being a novel p38α MAPK inhibitor. In addition, noncovalent contacts and the number of hydrogen bonds were found to be corresponding with the great binding recognition. Key influential amino acids were mostly hydrophobic residues, while the two charged residues including E71 and D168 were considered crucial ones due to their ability to form very strong H-bonds with the focused drugs. Altogether, our contributions obtained here could be theoretical guidance for further conducting experimental-based preclinical studies necessary for developing therapeutic agents targeting p38α MAPK

    Butoxy Mansonone G Inhibits STAT3 and Akt Signaling Pathways in Non-Small Cell Lung Cancers: Combined Experimental and Theoretical Investigations

    No full text
    Epidermal growth factor receptor (EGFR) is the key molecular target for non-small cell lung cancer (NSCLC) due to its major contribution to complex signaling cascades modulating the survival of cancer cells. Targeting EGFR-mediated signaling pathways has been proved as a potential strategy for NSCLC treatment. In the present study, mansonone G (MG), a naturally occurring quinone-containing compound, and its semi-synthetic ether derivatives were subjected to investigate the anticancer effects on human NSCLC cell lines expressing wild-type EGFR (A549) and mutant EGFR (H1975). In vitro cytotoxicity screening results demonstrated that butoxy MG (MG3) exhibits the potent cytotoxic effect on both A549 (IC50 of 8.54 μM) and H1975 (IC50 of 4.21 μM) NSCLC cell lines with low toxicity against PCS201-010 normal fibroblast cells (IC50 of 21.16 μM). Western blotting and flow cytometric analyses revealed that MG3 induces a caspase-dependent apoptosis mechanism through: (i) inhibition of p-STAT3 and p-Akt without affecting upstream p-EGFR and (ii) activation of p-Erk. The 500-ns molecular dynamics simulations and the molecular mechanics combined with generalized Born surface area (MM/GBSA)-based binding free energy calculations suggested that MG3 could possibly interact with STAT3 SH2 domain and ATP-binding pocket of Akt. According to principal component analysis, the binding of MG3 toward STAT3 and Akt dramatically altered the conformation of proteins, especially the residues in the active site, stabilizing MG3 mainly through van der Waals interactions

    Aurisin A Complexed with 2,6-Di-<i>O</i>-methyl-β-cyclodextrin Enhances Aqueous Solubility, Thermal Stability, and Antiproliferative Activity against Lung Cancer Cells

    No full text
    Aurisin A (AA), an aristolane dimer sesquiterpene isolated from the luminescent mushroom Neonothopanus nambi, exhibits various biological and pharmacological effects. However, its poor solubility limits its use for further medicinal applications. This study aimed to improve the water solubility of AA via complexation with β-cyclodextrin (βCD) and its derivatives (2,6-di-O-methyl-βCD (DMβCD) and 2-hydroxypropyl-βCD (HPβCD). A phase solubility analysis demonstrated that the solubility of AA linearly enhanced with increasing concentrations of βCDs (ranked in the order of AA/DMβCD > AA/HPβCD > AA/βCD). Notably, βCDs, especially DMβCD, increased the thermal stability of the inclusion complexes. The thermodynamic study indicated that the complexation between AA and βCD(s) was a spontaneous endothermic reaction, and AA/DMβCD possesses the highest binding strength. The complex formation between AA and DMβCD was confirmed by means of FT-IR, DSC, and SEM. Molecular dynamics simulations revealed that the stability and compactness of the AA/DMβCD complex were higher than those of the DMβCD alone. The encapsulation of AA led to increased intramolecular H-bond formations on the wider rim of DMβCD, enhancing the complex stability. The antiproliferative activity of AA against A549 and H1975 lung cancer cells was significantly improved by complexation with DMβCD. Altogether, the satisfactory water solubility, high thermal stability, and enhanced antitumor potential of the AA/DMβCD inclusion complex would be useful for its application as healthcare products or herbal medicines

    Enhanced Solubility and Anticancer Potential of Mansonone G By β-Cyclodextrin-Based Host-Guest Complexation: A Computational and Experimental Study

    No full text
    Mansonone G (MG), a plant-derived compound isolated from the heartwood of Mansonia gagei, possesses a potent antitumor effect on several kinds of malignancy. However, its poor solubility limits the use for practical applications. Beta-cyclodextrin (&beta;CD), a cyclic oligosaccharide composed of seven (1&rarr;4)-linked &alpha;-D-glucopyranose units, is capable of encapsulating a variety of poorly soluble compounds into its hydrophobic interior. In this work, we aimed to enhance the water solubility and the anticancer activity of MG by complexation with &beta;CD and its derivatives (2,6-di-O-methyl-&beta;CD (DM&beta;CD) and hydroxypropyl-&beta;CD). The 90-ns molecular dynamics simulations and MM/GBSA-based binding free energy results suggested that DM&beta;CD was the most preferential host molecule for MG inclusion complexation. The inclusion complex formation between MG and &beta;CD(s) was confirmed by DSC and SEM techniques. Notably, the MG/&beta;CDs inclusion complexes exerted significantly higher cytotoxic effect (~2&ndash;7 fold) on A549 lung cancer cells than the uncomplexed MG

    Quinoxalinones as A Novel Inhibitor Scaffold for EGFR (L858R/T790M/C797S) Tyrosine Kinase: Molecular Docking, Biological Evaluations, and Computational Insights

    No full text
    Combating acquired drug resistance of EGFR tyrosine kinase (TK) is a great challenge and an urgent necessity in the management of non-small cell lung cancers. The advanced EGFR (L858R/T790M/C797S) triple mutation has been recently reported, and there have been no specific drugs approved for this strain. Therefore, our research aimed to search for effective agents that could impede the function of EGFR (L858R/T790M/C797S) TK by the integration of in silico and in vitro approaches. Our in-house quinoxalinone-containing compounds were screened through molecular docking and their biological activity was then verified by enzyme- and cell-based assay. We found that the four quinoxalinone-containing compounds including CPD4, CPD15, CPD16, and CPD21 were promising to be novel EGFR (L858R/T790M/C797S) TK inhibitors. The IC50 values measured by the enzyme-based assay were 3.04 &plusmn; 1.24 nM; 6.50 &plusmn; 3.02 nM,10.50 &plusmn; 1.10 nM; and 3.81 &plusmn; 1.80 nM, respectively, which are at a similar level to a reference drug; osimertinib (8.93 &plusmn; 3.01 nM). Besides that, they displayed cytotoxic effects on a lung cancer cell line (H1975) with IC50 values in the range of 3.47 to 79.43 &mu;M. In this proposed study, we found that all screened compounds could interact with M793 at the hinge regions and two mutated residues including M790 and S797; which may be the main reason supporting the inhibitory activity in vitro. The structural dynamics revealed that the screened compounds have sufficient non-native contacts with surrounding amino acids and could be well-buried in the binding site&rsquo;s cleft. In addition, all predicted physicochemical parameters were favorable to be drug-like based on Lipinski&rsquo;s rule of five, and no extreme violation of toxicity features was found. Altogether, this study proposes a novel EGFR (L858R/T790M/C797S) TK inhibitor scaffold and provides a detailed understanding of compounds&rsquo; recognition and susceptibility at the molecular level

    Theoretical studies on RNA recognition by Musashi 1 RNA-binding protein

    No full text
    Abstract The Musashi (MSI) family of RNA-binding proteins, comprising the two homologs Musashi-1 (MSI1) and Musashi-2 (MSI2), typically regulates translation and is involved in cell proliferation and tumorigenesis. MSI proteins contain two ribonucleoprotein-like RNA-binding domains, RBD1 and RBD2, that bind single-stranded RNA motifs with a central UAG trinucleotide with high affinity and specificity. The finding that MSI also promotes the replication of Zika virus, a neurotropic Flavivirus, has triggered further investigations of the biochemical principles behind MSI–RNA interactions. However, a detailed molecular understanding of the specificity of MSI RBD1/2 interaction with RNA is still missing. Here, we performed computational studies of MSI1–RNA association complexes, investigating different RNA pentamer motifs using molecular dynamics simulations with binding free energy calculations based on the solvated interaction energy method. Simulations with Alphafold2 suggest that predicted MSI protein structures are highly similar to experimentally determined structures. The binding free energies show that two out of four RNA pentamers exhibit a considerably higher binding affinity to MSI1 RBD1 and RBD2, respectively. The obtained structural information on MSI1 RBD1 and RBD2 will be useful for a detailed functional and mechanistic understanding of this type of RNA–protein interactions

    Characterization of a nanoparticulate exopolysaccharide from Leuconostoc holzapfelii KM01 and its potential application in drug encapsulation

    No full text
    Fermentation of Lactic Acid Bacteria (LAB) is considered to be a sustainable approach for polysaccharide production. Herein, exopolysaccharide (EPS)-producing LAB strain KM01 was isolated from Thai fermented dessert, Khao Mak, which was then identified as Leuconostoc holzapfelii. High-performance anion-exchange chromatography, nuclear magnetic resonance spectroscopy and Fourier-transform infrared spectroscopy suggested that the KM01 EPS comprises α-1,6-linked glucosides. The molecular weight of KM01 EPS was around 500 kDa, but it can form large aggregates formation (MW > 2000 kDa) in an aqueous solution, judged by transmission electron microscopy and dynamic light scattering to be around 150 nm in size. Furthermore, this KM01 EPS form highly viscous hydrogels at concentrations above 5% (w/v). The formation of hydrogels and nanoparticle of KM01 EPS was found to be reversible. Finally, the suitability of KM01 EPS for biomedical applications was demonstrated by its lack of cytotoxicity and its ability to form complexes with quercetin. Unlike the common α-1,6-linked dextran, KM01 EPS can enhance the solubility of quercetin significantly
    corecore