17 research outputs found

    Using effective medium theories to design tailored nanocomposite materials for optical systems

    Get PDF
    Modern optical systems are subject to very restrictive performance, size and cost requirements. Especially in portable systems size often is the most important factor, which necessitates elaborate designs to achieve the desired specifications. However, current designs already operate very close to the physical limits and further progress is difficult to achieve by changing only the complexity of the design. Another way of improving the performance is to tailor the optical properties of materials specifically to the application at hand. A class of novel, customizable materials that enables the tailoring of the optical properties, and promises to overcome many of the intrinsic disadvantages of polymers, are nanocomposites. However, despite considerable past research efforts, these types of materials are largely underutilized in optical systems. To shed light into this issue we, in this paper, discuss how nanocomposites can be modeled using effective medium theories. In the second part, we then investigate the fundamental requirements that have to be fulfilled to make nanocomposites suitable for optical applications, and show that it is indeed possible to fabricate such a material using existing methods. Furthermore, we show how nanocomposites can be used to tailor the refractive index and dispersion properties towards specific applications

    Fundamentals of geometrical optics

    No full text

    Wavefront analysis from its slope data

    No full text
    In the aberration analysis of a wavefront over a certain domain, the polynomials that are orthogonal over and represent balanced wave aberrations for this domain are used. For example, Zernike circle polynomials are used for the analysis of a circular wavefront. Similarly, the annular polynomials are used to analyze the annular wavefronts for systems with annular pupils, as in a rotationally symmetric two-mirror system, such as the Hubble space telescope. However, when the data available for analysis are the slopes of a wavefront, as, for example, in a Shack-Hartmann sensor, we can integrate the slope data to obtain the wavefront data, and then use the orthogonal polynomials to obtain the aberration coefficients. An alternative is to find vector functions that are orthogonal to the gradients of the wavefront polynomials, and obtain the aberration coefficients directly as the inner products of these functions with the slope data. In this paper, we show that an infinite number of vector functions can be obtained in this manner. We show further that the vector functions that are irrotational are unique and propagate minimum uncorrelated additive random noise from the slope data to the aberration coefficients.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore