117 research outputs found
AGN feedback with the Square Kilometer Array (SKA) and implications for cluster physics and cosmology
AGN feedback is regarded as an important non-gravitational process in galaxy
clusters, providing useful constraints on large-scale structure formation. It
modifies the structure and energetics of the intra-cluster medium (ICM) and
hence its understanding is crucially needed in order to use clusters as high
precision cosmological probes. In this context, particularly keeping in mind
the upcoming high quality radio data expected from radio surveys like SKA with
its higher sensitivity, high spatial and spectral resolutions, we review our
current understanding of AGN feedback, its cosmological implications and the
impact that SKA can have in revolutionizing our understanding of AGN feedback
in large-scale structures. Recent developments regarding the AGN outbursts and
its possible contribution to excess entropy in the hot atmospheres of groups
and clusters, its correlation with the feedback energy in ICM, quenching of
cooling flows and the possible connection between cool core clusters and radio
mini-halos, are discussed. We describe current major issues regarding modeling
of AGN feedback and its impact on the surrounding medium. With regard to the
future of AGN feedback studies, we examine the possible breakthroughs that can
be expected from SKA observations. In the context of cluster cosmology, for
example, we point out the importance of SKA observations for cluster mass
calibration by noting that most of clusters discovered by eROSITA X-ray
mission can be expected to be followed up through a 1000 hour SKA-1 mid
programme. Moreover, approximately radio mini halos and
radio halos at can be potentially detected by SKA1 and SKA2 and used as
tracers of galaxy clusters and determination of cluster selection function.Comment: 14 pages, 10 figures, Review article accepted in Journal of
Astrophysics and Astronomy (JOAA
Climate Effects on Black Spruce and Trembling Aspen Productivity in Natural Origin Mixed Stands
Forest managers need site productivity estimates for tree species growing in mixed stands. Models developed in the past are generally for pure stands and don’t factor in the effects of climate change on site productivity. Therefore, site index (SI) models were developed for black spruce (Picea mariana Mill. B.S.P.) and trembling aspen (Populus tremuloides Michx.) trees grown in natural origin mixed stands. For this, 186 trees (93 black spruce and trembling aspen each) were sampled from 31 even-aged natural mixed stands (sites) (3 trees/species/site) across Ontario, Canada. Stand height growth models were developed by incorporating climate variables during growth for each species. Stem analysis data collected from sampled trees were used to develop these models. A mixed effects modelling approach was used to fit the models. The relationship between SIs of black spruce and trembling aspen grown in mixed stands was analyzed by calculating correlation coefficients and plotting black spruce SIs against those of trembling aspen. Climate effects on site productivity were evaluated by predicting stand heights for 4 geographic areas of Ontario for the period 2021 to 2080. Three emissions scenarios reflecting different amounts of heat at the end of the century (i.e., 2.6, 4.5, and 8.5 watts m-2 ) were used in the stand height growth models developed here for evaluation. Climate effects were more pronounced for trembling aspen than black spruce only in the far west. The relationship between SIs of black spruce and trembling aspen trees grown in natural origin mixed stands could not be described using a linear/nonlinear mathematical function. The models developed here can be used to estimate stand height and SI of black spruce and trembling aspen trees grown in natural origin mixed stands in a changing climate. In the absence of climate data, models fitted without climate variables can be used to estimate SI of both species
The Level of Stress among Children with Movement Disorders and the Impact of Age, Gender, and Level of Movement Disorders on Stress
Among people exposed to major psychological stressors in early life, there are elevated rates of morbidity and mortality from chronic diseases of aging. The most compelling data come from studies of children raised in poverty or maltreated by their parents, who show heightened vulnerability to vascular disease, autoimmune disorders, and premature mortality. Movement disorders are common neurologic disturbances in childhood. There are two major types of movement disorders. For the purpose of the study, the investigator selected 142 children's with movement disorders between the age of 10 to 15. The present study is designed to discover the nature, broaden and correlates of stress experienced by the individuals with movement disorders
Prevalence of drug-resistant pulmonary tuberculosis in India: systematic review and meta-analysis
Climate effects on jack pine and black spruce productivity in natural origin mixed stands and site index conversion equations
Forest managers need site productivity estimates for currently grown tree species as well as those that might be considered for future management on a given site. Existing models are generally for pure stands and don't factor in the effects of climate change on growth. Therefore, site index (SI) conversion equations were developed for jack pine (Pinus banksiana Lamb.) and black spruce (Picea mariana Mill. B.S.P.) trees grown in mixed natural stands. For this, 180 trees (90 jack pine and black spruce each) were sampled from 30 even-aged natural origin mixed stands (sites) (3 per species per site) across Ontario, Canada. Stem analysis data collected from these trees were used to develop stand height growth models that incorporate climate variables during growth for each species. A mixed effects modeling approach was used to fit the models. The SI conversion equations were then developed by regressing SI of one species against that of the other species and climate variables.To evaluate climate effects on site productivity, stand heights were predicted for 4 geographic areas of Ontario for the period 2021 to 2080 under 3 emissions scenarios reflecting different amounts of heat at the end of the century (i.e., 2.6, 4.5, and 8.5 W m −2) using the stand height growth models developed here. Climate effects were more pronounced for black spruce than for jack pine and varied among locations.The models developed here can be used to estimate stand height and SI of jack pine and black spruce trees grown in natural origin mixed stands in a changing climate. Using SI conversion equations, the SI of one species can be estimated in terms of the SI of the other species and climate variables. In the absence of climate data, models can be used to estimate SI of both species
Modelling Climate Effects on Site Productivity and Developing Site Index Conversion Equations for Jack Pine and Trembling Aspen Mixed Stands
Forest site productivity estimates are crucial for making informed forest resource management decisions. These estimates are valuable both for the tree species currently growing in the stands and for those being considered for future stands. Current models are generally designed for pure stands and do not account for the influence of climate on tree growth. Consequently, site index (SI) conversion equations were developed specifically for jack pine (Pinus banksiana Lamb.) and trembling aspen (Populus tremuloides Michx.) trees grown in naturally originated mixed stands. This work involved sampling 186 trees (93 of each species) from 31 even-aged mixed stands (3 trees per species per site) across Ontario, Canada. Stem analysis data from these trees were utilized to develop stand height growth models by incorporating climate variables for each species. The models were developed using a mixed effects modelling approach. The SI of one species was correlated with that of the other species and climate variables to establish SI conversion equations. The effect of climate on site productivity was evaluated by projecting stand heights at four geographic locations (east, center, west, and far west) in Ontario from 2022 to 2100 using the derived stand height growth models. Height projections were made under three emissions scenarios reflecting varying levels of radiative forcing by the end of the century (2.6, 4.5, and 8.5 watts m−2). Climate effects were observed to vary across different regions, with the least and most pronounced effects noted in the central and far western areas, respectively, for jack pine, while effects were relatively similar across all locations for trembling aspen. Stand heights and SIs of jack pine and trembling aspen trees grown in naturally originated mixed stands can be estimated using the height growth models developed here. Similarly, SI conversion equations enable the estimation of the SI for one species based on the SI of another species and environmental variables
Climate effects on jack pine and black spruce productivity in natural origin mixed stands and site index conversion equations
Increasing Volumetric Prediction Accuracy—An Essential Prerequisite for End-Product Forecasting in Red Pine
Sustainable forest management requires accurate estimates of wood volume. At present, red pine (Pinus resinosa Sol. ex Aiton) is the most widely planted conifer tree species in southern Ontario, Canada. Therefore, inside and outside bark volume equations were developed for red pine trees grown in plantations. One hundred and fifty red pine trees were sampled from 30 even-aged plantations from across Ontario, Canada. Height-diameter pairs along the boles of sampled trees used to calculate stem volumes were obtained from stem analysis. Equations fitted to the data were a combined variable, modified combined variable, and modified form of dimensionally compatible volume equations. These equations were compared for their goodness-of-fit statistics, logical consistency, and predictive accuracy. The goodness-of-fit characteristics for all three equations were comparable for both inside and outside bark volumes. However, the estimated values for the intercept for the modified form of the dimensionally compatible and modified combined variable volume equations were negative and nonsignificant. The combined variable volume equation resulted in logically consistent parameter estimates in the presence of random effects parameters. Therefore, this equation was selected as the inside and outside bark volume equation for red pine trees grown in plantations. A nonlinear mixed-effects modeling approach was applied in fitting the final volume equation that included a weight (power function) to address heteroscedasticity. The equations developed here can be used to calculate inside and outside bark volumes of red pine plantations in boreal forests in Eastern Canada. These equations would require both diameter at breast height (DBH) and total height values in meters
Increasing Volumetric Prediction Accuracy—An Essential Prerequisite for End-Product Forecasting in Red Pine
Sustainable forest management requires accurate estimates of wood volume. At present, red pine (Pinus resinosa Sol. ex Aiton) is the most widely planted conifer tree species in southern Ontario, Canada. Therefore, inside and outside bark volume equations were developed for red pine trees grown in plantations. One hundred and fifty red pine trees were sampled from 30 even-aged plantations from across Ontario, Canada. Height-diameter pairs along the boles of sampled trees used to calculate stem volumes were obtained from stem analysis. Equations fitted to the data were a combined variable, modified combined variable, and modified form of dimensionally compatible volume equations. These equations were compared for their goodness-of-fit statistics, logical consistency, and predictive accuracy. The goodness-of-fit characteristics for all three equations were comparable for both inside and outside bark volumes. However, the estimated values for the intercept for the modified form of the dimensionally compatible and modified combined variable volume equations were negative and nonsignificant. The combined variable volume equation resulted in logically consistent parameter estimates in the presence of random effects parameters. Therefore, this equation was selected as the inside and outside bark volume equation for red pine trees grown in plantations. A nonlinear mixed-effects modeling approach was applied in fitting the final volume equation that included a weight (power function) to address heteroscedasticity. The equations developed here can be used to calculate inside and outside bark volumes of red pine plantations in boreal forests in Eastern Canada. These equations would require both diameter at breast height (DBH) and total height values in meters.</jats:p
- …
