4 research outputs found

    Structure from motion photogrammetry in ecology: Does the choice of software matter?

    Get PDF
    This is the final version. Available from Wiley via the DOI in this record.Data available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.q7c400k (Forsmoo et al., 2019).Image‐based modeling, and more precisely, Structure from Motion (SfM) and Multi‐View Stereo (MVS), is emerging as a flexible, self‐service, remote sensing tool for generating fine‐grained digital surface models (DSMs) in the Earth sciences and ecology. However, drone‐based SfM + MVS applications have developed at a rapid pace over the past decade and there are now many software options available for data processing. Consequently, understanding of reproducibility issues caused by variations in software choice and their influence on data quality is relatively poorly understood. This understanding is crucial for the development of SfM + MVS if it is to fulfill a role as a new quantitative remote sensing tool to inform management frameworks and species conservation schemes. To address this knowledge gap, a lightweight multirotor drone carrying a Ricoh GR II consumer‐grade camera was used to capture replicate, centimeter‐resolution image datasets of a temperate, intensively managed grassland ecosystem. These data allowed the exploration of method reproducibility and the impact of SfM + MVS software choice on derived vegetation canopy height measurement accuracy. The quality of DSM height measurements derived from four different, yet widely used SfM‐MVS software—Photoscan, Pix4D, 3DFlow Zephyr, and MICMAC, was compared with in situ data captured on the same day as image capture. We used both traditional agronomic techniques for measuring sward height, and a high accuracy and precision differential GPS survey to generate independent measurements of the underlying ground surface elevation. Using the same replicate image dataset (n = 3) as input, we demonstrate that there are 1.7, 2.0, and 2.5 cm differences in RMSE (excluding one outlier) between the outputs from different SfM + MVS software using High, Medium, and Low quality settings, respectively. Furthermore, we show that there can be a significant difference, although of small overall magnitude between replicate image datasets (n = 3) processed using the same SfM + MVS software, following the same workflow, with a variance in RMSE of up to 1.3, 1.5, and 2.7 cm (excluding one outlier) for “High,” “Medium,” and “Low” quality settings, respectively. We conclude that SfM + MVS software choice does matter, although the differences between products processed using “High” and “Medium” quality settings are of small overall magnitude.James Hutton InstituteUniversity of Exete

    GEOREFERENCING UAS DERIVATIVES THROUGH POINT CLOUD REGISTRATION WITH ARCHIVED LIDAR DATASETS

    No full text
    Georeferencing gathered images is a common step before performing spatial analysis and other processes on acquired datasets using unmanned aerial systems (UAS). Methods of applying spatial information to aerial images or their derivatives is through onboard GPS (Global Positioning Systems) geotagging, or through tying of models through GCPs (Ground Control Points) acquired in the field. Currently, UAS (Unmanned Aerial System) derivatives are limited to meter-levels of accuracy when their generation is unaided with points of known position on the ground. The use of ground control points established using survey-grade GPS or GNSS receivers can greatly reduce model errors to centimeter levels. However, this comes with additional costs not only with instrument acquisition and survey operations, but also in actual time spent in the field. This study uses a workflow for cloud-based post-processing of UAS data in combination with already existing LiDAR data. The georeferencing of the UAV point cloud is executed using the Iterative Closest Point algorithm (ICP). It is applied through the open-source CloudCompare software (Girardeau-Montaut, 2006) on a ‘skeleton point cloud’. This skeleton point cloud consists of manually extracted features consistent on both LiDAR and UAV data. For this cloud, roads and buildings with minimal deviations given their differing dates of acquisition are considered consistent. Transformation parameters are computed for the skeleton cloud which could then be applied to the whole UAS dataset. In addition, a separate cloud consisting of non-vegetation features automatically derived using CANUPO classification algorithm (Brodu and Lague, 2012) was used to generate a separate set of parameters. Ground survey is done to validate the transformed cloud. An RMSE value of around 16 centimeters was found when comparing validation data to the models georeferenced using the CANUPO cloud and the manual skeleton cloud. Cloud-to-cloud distance computations of CANUPO and manual skeleton clouds were obtained with values for both equal to around 0.67 meters at 1.73 standard deviation

    QUALITY ASSESSMENT AND CONTROL OF OUTPUTS OF A NATIONWIDE AGRICULTURAL LAND COVER MAPPING PROGRAM USING LIDAR: PHIL-LIDAR 2 PARMAP EXPERIENCE

    No full text
    The Agricultural Resources Extraction from LiDAR Surveys (PARMAP) project component of the Nationwide Detailed Resources Assessment using LiDAR (Phil-LiDAR 2) Program aims to produce detailed agricultural maps using LiDAR. Agricultural land cover at crop level was classified through object based image analysis using Support Vector Machine as classifier and LiDAR derivatives from point cloud (2 points per sq.m.) and orthophoto (0.5-meter resolution) as inputs. An accuracy of at least 90 %, assessed using validation points from the field and through image interpretation, was required before proceeding to post-processing and map lay-out. Knowledge sharing and capacity development facilitated by the University of the Philippines Diliman (UPD) enabled partner universities across the Philippines to produce outputs for their assigned region. Considering output layers were generated by multiple teams working on different landscape complexities with some degree of data quality variability, quality checking is crucial to ensure accuracy standards were met. UPD PARMap devised a centralized and end-to-end scheme divided into four steps – land classification, GIS post-processing, schema application, and map lay-out. At each step, a block is reviewed and, subsequently, either approved or returned with documentation on required revisions. Turnaround time of review is at least one block (area ranging from 10 to 580 sq. km.) per day. For coastal municipalities, an additional integration process to incorporate mapped coastal features was applied. Common problems observed during quality checking include misclassifications, gaps between features, incomplete attributes and missing map elements. Some issues are particular to specific blocks such as problematic LiDAR derivatives. UPD addressed these problems through discussion and mentoring visits to partner universities. As of March 2017, a total of 336 municipal agricultural maps have been turned-over to various stakeholders. For the remaining months of the program, an additional 360 maps are expected to be distributed
    corecore